[1] | Afify, AZ; Altun, E.; Alizadeh, M.; Ozel, G.; Hamedani, GG, The odd exponentiated half-logistic-G family: properties, characterizations and applications, Chil. J. Stat., 8, 2, 65-91 (2017) ·Zbl 1449.62023 |
[2] | Anwar, M., Bibi, A.: The half-logistic generalized Weibull distribution. J. Probab. Stat., Volume 2018, Article ID 8767826, 12 pages (2018) ·Zbl 1431.62046 |
[3] | Balakrishnan, N., Order statistics from the half logistic distribution, J. Stat. Comput. Simul., 20, 287-309 (1985) ·Zbl 0569.62042 ·doi:10.1080/00949658508810784 |
[4] | Balakrishnan, N.: Handbook of the Logistic Distribution, vol. 123 of Statistics: A Series of Textbooks and Monographs, Marcel Dekker, New York, USA (1992) ·Zbl 0794.62001 |
[5] | Balakrishnan, N.; Puthenpura, S., Best linear unbiased estimators of location and scale parameters of the half logistic distribution, J. Stat. Comput. Simul., 25, 193-204 (1986) ·Zbl 0646.62024 ·doi:10.1080/00949658608810932 |
[6] | Casella, G.; Berger, RL, Statistical Inference (1990), USA: Brooks/Cole Publishing Company, USA ·Zbl 0699.62001 |
[7] | Castellares, F.; Santos, MAC; Montenegro, L.; Cordeiro, GM, A gamma-generated logistic distribution: properties and inference, Am. J. Math. Manag. Sci., 34, 14-39 (2015) |
[8] | Chen, G.; Balakrishnan, N., A general purpose approximate goodness-of-fit test, J. Qual. Technol., 27, 154-161 (1995) ·doi:10.1080/00224065.1995.11979578 |
[9] | Cordeiro, GM; Alizadeh, M.; Marinho, PRD, The type I half-logistic family of distributions, J. Stat. Comput. Simul., 86, 4, 707-728 (2016) ·Zbl 1510.62114 ·doi:10.1080/00949655.2015.1031233 |
[10] | Cordeiro, G.M., Alizadeh, M., Ortega, E.M.M.: The exponentiated half logistic family of distributions: properties and applications. J. Probab. Stat., vol. 2014, Article ID 864396, 21 pages (2014) ·Zbl 1307.62030 |
[11] | Cox, DR; Hinkley, DV, Theoretical Statistics (1974), London: Chapman and Hall, London ·Zbl 0334.62003 ·doi:10.1007/978-1-4899-2887-0 |
[12] | David, HA; Nagaraja, HN, Order Statistics (2003), New Jersey: Wiley, New Jersey ·Zbl 1053.62060 ·doi:10.1002/0471722162 |
[13] | DiDonato, AR; Morris, JAH, Computation of the incomplete gamma functions, ACM Trans. Math. Software, 12, 377-393 (1986) ·Zbl 0623.65016 ·doi:10.1145/22721.23109 |
[14] | Doornik, JA, Ox 5: An Object-Oriented Matrix Programming Language (2007), London: Timberlake Consultants, London |
[15] | El-Sherpieny, ESA; Elsehetry, MM, Kumaraswamy type I half logistic family of distributions with applications, GU J. Sci., 32, 1, 333-349 (2019) |
[16] | Kenney, J., Keeping, E.: Mathematics of Statistics. Vol. 1, 3rd edition, Princeton: NJ, Van Nostrand (1962) |
[17] | Korkmaz, MÇ; Chesneau, C.; Korkmaz, ZS, On the arcsecant hyperbolic normal distribution. Properties, quantile regression modeling and applications, Symmetry, 13, 1-24 (2021) ·doi:10.3390/sym13010117 |
[18] | Kotz, S.; Lumelskii, Y.; Pensky, M., The Stress-Strength Model and its Generalizations and Applications (2003), Singapore: World Scientific, Singapore ·Zbl 1017.62100 ·doi:10.1142/5015 |
[19] | Krishnarani, SD, On a power transformation of half-logistic distribution, J. Probab. Stat., 20, 1-10 (2016) ·Zbl 1431.62057 ·doi:10.1155/2016/2084236 |
[20] | Lemonte, AJ, A new exponential-type distribution with constant, decreasing, increasing, upside-down bathtub and bathtub-shaped failure rate function, Comput. Stat. Data Anal., 62, 149-170 (2013) ·Zbl 1348.62043 ·doi:10.1016/j.csda.2013.01.011 |
[21] | Moors, JJA, A quantile alternative for kurtosis, Statistician, 37, 25-32 (1998) ·doi:10.2307/2348376 |
[22] | Nadarajah, S.; Cordeiro, GM; Ortega, EMM, The Zografos-Balakrishnan-G family of distributions: mathematical properties and applications, Commun. Stat. Theory Methods, 44, 186-215 (2015) ·Zbl 1314.62042 ·doi:10.1080/03610926.2012.740127 |
[23] | Nadarajah, S.; Kotz, S., The beta exponential distribution, Reliab. Eng. Syst. Saf., 91, 689-697 (2006) ·doi:10.1016/j.ress.2005.05.008 |
[24] | Nadarajah, S.; Rocha, R., Newdistns: an R package for new families of distributions, J. Stat. Softw., 69, 10, 1-32 (2016) ·doi:10.18637/jss.v069.i10 |
[25] | Nichols, MD; Padgett, WJ, A bootstrap control chart for Weibull percentiles, Qual. Reliab. Eng. Int., 22, 141-151 (2006) ·doi:10.1002/qre.691 |
[26] | Olapade, AK, On characterizations of the half logistic distribution, InterStat, 2, 1-7 (2003) |
[27] | Olapade, AK, The type I generalized half logistic distribution, J. Iran. Stat. Soc., 13, 1, 69-82 (2014) ·Zbl 1297.62032 |
[28] | Oliveira, J.; Santos, J.; Xavier, C.; Trindade, D.; Cordeiro, GM, The McDonald half-logistic distribution: theory and practice, Commun. Stat. Theory Methods, 45, 7, 2005-2022 (2016) ·Zbl 1338.62048 ·doi:10.1080/03610926.2013.873131 |
[29] | Parzen, E., Nonparametric statistical modelling (with comments), J. Amer. Statist. Assoc., 74, 105-131 (1979) ·Zbl 0407.62001 ·doi:10.1080/01621459.1979.10481621 |
[30] | R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2009) |
[31] | Rayner, JCW; Best, DJ, Smooth Tests of Goodness of Fit (1989), Oxford: Oxford University Press, Oxford ·Zbl 0731.62064 |
[32] | Scott, DW; Gotto, AM; Cole, JS; Gory, GA, Plasma lipids as collateral risk factors in coronory artery disease: a case study of male with chest pain, J. Coronory Dis., 31, 2, 337-345 (1978) ·doi:10.1016/0021-9681(78)90049-8 |
[33] | Shaked, M.; Shanthikumar, JG, Stochastic Orders and their Applications (1994), New York: Academic Press, New York ·Zbl 0806.62009 |
[34] | Smith, RL; Naylor, JC, A comparison of maximum likelihood and Bayesian estimators for the three-parameter Weibull distribution, J. R. Stat. Soc. Ser. C, 36, 358-369 (1987) |
[35] | Torabi, H.; Bagheri, FL, Estimation of parameters for an extended generalized half logistic distribution based on complete and censored data, JIRSS, 9, 2, 171-195 (2010) ·Zbl 1244.62027 |
[36] | Yegen, D.; Ozel, G., Marshall-Olkin half logistic distribution with theory and applications, Alphanum. J., 6, 2, 408-416 (2018) ·doi:10.17093/alphanumeric.409992 |
[37] | Zografos, K.; Balakrishnan, N., On families of beta- and generalized gamma-generated distributions and associated inference, Stat. Methodol., 6, 344-362 (2009) ·Zbl 1463.62023 ·doi:10.1016/j.stamet.2008.12.003 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.