Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

The gamma power half-logistic distribution: theory and applications.(English)Zbl 1530.60013

Summary: In this paper, we propose a new three-parameter distribution defined on the positive real line, called the gamma power half-logistic distribution. It constitutes an extension of the power half-logistic distribution using the gamma generated mechanism. The capabilities of the parent distribution are thus improved in several aspects. In particular, the hazard rate function now presents increasing failure, decreasing failure, and bathtub shapes, which are demanded characteristics in the context of statistical modelling. Other features related to the quantiles, skewness, kurtosis, moments, incomplete moments, mean deviations, Bonferroni and Lorenz curves, stochastic ordering, reliability parameter, and distributions of order statistics are also discussed. Subsequently, the gamma power half-logistic model is investigated using real-world results. We use the classical maximum likelihood method for estimating the model parameters, with a simulation trial demonstrating the effectiveness of the method for large enough sample sizes. Then, four real-life data sets of different sizes are used for the concrete application of the model, demonstrating its superiority in fitting compared to similar models.

MSC:

60E05 Probability distributions: general theory
62E15 Exact distribution theory in statistics
62F10 Point estimation

Software:

Newdistns;R;Ox

Cite

References:

[1]Afify, AZ; Altun, E.; Alizadeh, M.; Ozel, G.; Hamedani, GG, The odd exponentiated half-logistic-G family: properties, characterizations and applications, Chil. J. Stat., 8, 2, 65-91 (2017) ·Zbl 1449.62023
[2]Anwar, M., Bibi, A.: The half-logistic generalized Weibull distribution. J. Probab. Stat., Volume 2018, Article ID 8767826, 12 pages (2018) ·Zbl 1431.62046
[3]Balakrishnan, N., Order statistics from the half logistic distribution, J. Stat. Comput. Simul., 20, 287-309 (1985) ·Zbl 0569.62042 ·doi:10.1080/00949658508810784
[4]Balakrishnan, N.: Handbook of the Logistic Distribution, vol. 123 of Statistics: A Series of Textbooks and Monographs, Marcel Dekker, New York, USA (1992) ·Zbl 0794.62001
[5]Balakrishnan, N.; Puthenpura, S., Best linear unbiased estimators of location and scale parameters of the half logistic distribution, J. Stat. Comput. Simul., 25, 193-204 (1986) ·Zbl 0646.62024 ·doi:10.1080/00949658608810932
[6]Casella, G.; Berger, RL, Statistical Inference (1990), USA: Brooks/Cole Publishing Company, USA ·Zbl 0699.62001
[7]Castellares, F.; Santos, MAC; Montenegro, L.; Cordeiro, GM, A gamma-generated logistic distribution: properties and inference, Am. J. Math. Manag. Sci., 34, 14-39 (2015)
[8]Chen, G.; Balakrishnan, N., A general purpose approximate goodness-of-fit test, J. Qual. Technol., 27, 154-161 (1995) ·doi:10.1080/00224065.1995.11979578
[9]Cordeiro, GM; Alizadeh, M.; Marinho, PRD, The type I half-logistic family of distributions, J. Stat. Comput. Simul., 86, 4, 707-728 (2016) ·Zbl 1510.62114 ·doi:10.1080/00949655.2015.1031233
[10]Cordeiro, G.M., Alizadeh, M., Ortega, E.M.M.: The exponentiated half logistic family of distributions: properties and applications. J. Probab. Stat., vol. 2014, Article ID 864396, 21 pages (2014) ·Zbl 1307.62030
[11]Cox, DR; Hinkley, DV, Theoretical Statistics (1974), London: Chapman and Hall, London ·Zbl 0334.62003 ·doi:10.1007/978-1-4899-2887-0
[12]David, HA; Nagaraja, HN, Order Statistics (2003), New Jersey: Wiley, New Jersey ·Zbl 1053.62060 ·doi:10.1002/0471722162
[13]DiDonato, AR; Morris, JAH, Computation of the incomplete gamma functions, ACM Trans. Math. Software, 12, 377-393 (1986) ·Zbl 0623.65016 ·doi:10.1145/22721.23109
[14]Doornik, JA, Ox 5: An Object-Oriented Matrix Programming Language (2007), London: Timberlake Consultants, London
[15]El-Sherpieny, ESA; Elsehetry, MM, Kumaraswamy type I half logistic family of distributions with applications, GU J. Sci., 32, 1, 333-349 (2019)
[16]Kenney, J., Keeping, E.: Mathematics of Statistics. Vol. 1, 3rd edition, Princeton: NJ, Van Nostrand (1962)
[17]Korkmaz, MÇ; Chesneau, C.; Korkmaz, ZS, On the arcsecant hyperbolic normal distribution. Properties, quantile regression modeling and applications, Symmetry, 13, 1-24 (2021) ·doi:10.3390/sym13010117
[18]Kotz, S.; Lumelskii, Y.; Pensky, M., The Stress-Strength Model and its Generalizations and Applications (2003), Singapore: World Scientific, Singapore ·Zbl 1017.62100 ·doi:10.1142/5015
[19]Krishnarani, SD, On a power transformation of half-logistic distribution, J. Probab. Stat., 20, 1-10 (2016) ·Zbl 1431.62057 ·doi:10.1155/2016/2084236
[20]Lemonte, AJ, A new exponential-type distribution with constant, decreasing, increasing, upside-down bathtub and bathtub-shaped failure rate function, Comput. Stat. Data Anal., 62, 149-170 (2013) ·Zbl 1348.62043 ·doi:10.1016/j.csda.2013.01.011
[21]Moors, JJA, A quantile alternative for kurtosis, Statistician, 37, 25-32 (1998) ·doi:10.2307/2348376
[22]Nadarajah, S.; Cordeiro, GM; Ortega, EMM, The Zografos-Balakrishnan-G family of distributions: mathematical properties and applications, Commun. Stat. Theory Methods, 44, 186-215 (2015) ·Zbl 1314.62042 ·doi:10.1080/03610926.2012.740127
[23]Nadarajah, S.; Kotz, S., The beta exponential distribution, Reliab. Eng. Syst. Saf., 91, 689-697 (2006) ·doi:10.1016/j.ress.2005.05.008
[24]Nadarajah, S.; Rocha, R., Newdistns: an R package for new families of distributions, J. Stat. Softw., 69, 10, 1-32 (2016) ·doi:10.18637/jss.v069.i10
[25]Nichols, MD; Padgett, WJ, A bootstrap control chart for Weibull percentiles, Qual. Reliab. Eng. Int., 22, 141-151 (2006) ·doi:10.1002/qre.691
[26]Olapade, AK, On characterizations of the half logistic distribution, InterStat, 2, 1-7 (2003)
[27]Olapade, AK, The type I generalized half logistic distribution, J. Iran. Stat. Soc., 13, 1, 69-82 (2014) ·Zbl 1297.62032
[28]Oliveira, J.; Santos, J.; Xavier, C.; Trindade, D.; Cordeiro, GM, The McDonald half-logistic distribution: theory and practice, Commun. Stat. Theory Methods, 45, 7, 2005-2022 (2016) ·Zbl 1338.62048 ·doi:10.1080/03610926.2013.873131
[29]Parzen, E., Nonparametric statistical modelling (with comments), J. Amer. Statist. Assoc., 74, 105-131 (1979) ·Zbl 0407.62001 ·doi:10.1080/01621459.1979.10481621
[30]R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2009)
[31]Rayner, JCW; Best, DJ, Smooth Tests of Goodness of Fit (1989), Oxford: Oxford University Press, Oxford ·Zbl 0731.62064
[32]Scott, DW; Gotto, AM; Cole, JS; Gory, GA, Plasma lipids as collateral risk factors in coronory artery disease: a case study of male with chest pain, J. Coronory Dis., 31, 2, 337-345 (1978) ·doi:10.1016/0021-9681(78)90049-8
[33]Shaked, M.; Shanthikumar, JG, Stochastic Orders and their Applications (1994), New York: Academic Press, New York ·Zbl 0806.62009
[34]Smith, RL; Naylor, JC, A comparison of maximum likelihood and Bayesian estimators for the three-parameter Weibull distribution, J. R. Stat. Soc. Ser. C, 36, 358-369 (1987)
[35]Torabi, H.; Bagheri, FL, Estimation of parameters for an extended generalized half logistic distribution based on complete and censored data, JIRSS, 9, 2, 171-195 (2010) ·Zbl 1244.62027
[36]Yegen, D.; Ozel, G., Marshall-Olkin half logistic distribution with theory and applications, Alphanum. J., 6, 2, 408-416 (2018) ·doi:10.17093/alphanumeric.409992
[37]Zografos, K.; Balakrishnan, N., On families of beta- and generalized gamma-generated distributions and associated inference, Stat. Methodol., 6, 344-362 (2009) ·Zbl 1463.62023 ·doi:10.1016/j.stamet.2008.12.003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp