Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Density theorems for \(\mathrm{GL}(n)\).(English)Zbl 1530.11052

The paper is concerned about the following question about automorphic representations of \(\mathrm{GL}_n\) over \(\mathbb{Q}\) in families. Fix a place \(v\) of \(\mathbb{Q}\). For every automorphic representation \(\pi\) of \(\mathrm{GL}_n\), denote by \(\mu_\pi(v) = (\mu_\pi(v, 1), \ldots, \mu_\pi(v, n))\) its local spectral parameter at \(v\), and write \(\sigma_\pi(v) = \min_j |\operatorname{Re}\mu_\pi(v, j)|\), which measures the distance of \(\pi_v\) to the tempered spectrum. For \(\sigma \geq 0\) and a finite family \(\mathcal{F}\) of automorphic representations of \(\mathrm{GL}(n)\), define \(N_v(\sigma, \mathcal{F})\) be the number of \(\pi\)’s with \(\sigma_\pi(v) \geq \sigma\).
Let \(q\) be a prime, and let \(\Gamma_0(q)\) be the subgroup of \(\mathrm{SL}_n(\mathbb{Z})\) consisting of matrices whose last row is \(\equiv (0, \ldots, 0, *) \pmod{q}\). Now consider the family \(\mathcal{F}_I(q)\) of cuspidal representations \(\pi\) generated by Maass forms of level \(\Gamma_0(q)\) with Laplace eigenvalue in a finite interval \(I\). Theorem 1 is the following assertion: Let \(n \geq 3\) and \(v \neq q\); let \(\varepsilon, \sigma > 0\). We have \(N_v(\sigma, \mathcal{F}_I(q)) \ll_{I, v, n, \varepsilon} q^{n-1-4\sigma + \varepsilon}\).
This reduces to known results if \(n=2\) or if \((n, v) = (3, \infty)\). For higher \(n\) the result is completely new.
The proof of Theorem 1 is based on an in-depth analysis of the arithmetic side of the Kuznetsov trace formula, with a test function that blows up for exceptional Langlands parameters at \(v\). This turns out to be easier to use than the Arthur-Selberg trace formula. Specifically, one needs an explicit analysis of the \(\mathrm{GL}_n\) Kloosterman sums \(S_{q, w}(M, N, (q, \ldots, q))\), recorded in Theorem 3.
As by-products, one obtains a large sieve inequality (Theorem 4), as well as a best-possible bound for the second moment of \(L\)-functions on the critical line (Corollary 5), namely: \(\sum_{\pi \in \mathcal{F}_I(q)} |L(\frac{1}{2} + it, \pi)|^2 \ll_{I, t, n, \varepsilon} q^{n-1+\varepsilon}\) under the same assumptions.

MSC:

11F72 Spectral theory; trace formulas (e.g., that of Selberg)
11L05 Gauss and Kloosterman sums; generalizations

Software:

GL(n)pack

Cite

References:

[1]Arthur, J.: Eisenstein series and the trace formula. In: Automorphic Forms, Representations and \(L\)-Functions, Corvallis/Oregon 1977. Proceedings of Symposia in Pure Mathematics, vol. 33, pp. 253-274 (1979) ·Zbl 0431.22016
[2]Assing, E., Blomer, V.: The density conjecture for principal congruence subgroups. arXiv:2204.08868
[3]Blomer, V., Applications of the Kuznetsov formula on \({\rm GL}(3)\), Invent. Math., 194, 673-729 (2013) ·Zbl 1292.11064 ·doi:10.1007/s00222-013-0454-3
[4]Blomer, V.; Brumley, F., The role of the Ramanujan conjecture in analytic number theory, Bull. Am. Math. Soc., 50, 267-320 (2013) ·Zbl 1341.11024 ·doi:10.1090/S0273-0979-2013-01404-6
[5]Blomer, V.; Buttcane, J.; Maga, P., Applications of the Kuznetsov formula on \({\rm GL}(3)\): the level aspect, Math. Ann., 369, 723-759 (2017) ·Zbl 1400.11104 ·doi:10.1007/s00208-017-1558-7
[6]Blomer, V.; Buttcane, J.; Raulf, N., A Sato-Tate law for \({\rm GL}(3)\), Commun. Math. Helv., 89, 895-919 (2014) ·Zbl 1317.11053 ·doi:10.4171/CMH/337
[7]Bruggeman, RW; Miatello, RJ, Sum formula for \({\rm SL}_2\) over a number field and Selberg type estimate for exceptional eigenvalues, GAFA, 8, 627-655 (1998) ·Zbl 0924.11039
[8]Bruggeman, RW; Miatello, RJ, Density results for automorphic forms on Hilbert modular groups, GAFA, 13, 681-719 (2003) ·Zbl 1057.11028
[9]Dabrowski, R.; Reeder, M., Kloosterman sets in reductive groups, J. Number Theory, 73, 228-255 (1998) ·Zbl 0919.11055 ·doi:10.1006/jnth.1998.2301
[10]Finis, T., Matz, J.: On the asymptotics of Hecke operators for reductive groups. Math. Ann. 380, 1037-1104 (2021) ·Zbl 1481.43010
[11]da Fonseca, CM; Petronilho, J., Explicit inverses of some tridiagonal matrices, Linear Algebra Appl., 325, 7-21 (2001) ·Zbl 0983.15007 ·doi:10.1016/S0024-3795(00)00289-5
[12]Friedberg, S., Poincaré series for \({\rm GL}(n)\): Fourier expansion, Kloosterman sums, and algebreo-geometric estimates, Math. Z., 196, 165-188 (1987) ·Zbl 0612.10020 ·doi:10.1007/BF01163653
[13]Friedberg, S.; Goldfeld, D., Mellin transforms of Whittaker functions, Bull. Soc. Math. France, 121, 91-107 (1993) ·Zbl 0781.11022 ·doi:10.24033/bsmf.2201
[14]Goldfeld, D.: Automorphic Forms and L-Functions for the Group \({\rm GL}(n, {\mathbb{R}})\). Cambridge Studies in Advanced Mathematics, vol. 99 (2006) ·Zbl 1108.11039
[15]Huntley, J.; Katznelson, Y., Density theorems for congruence groups in real rank 1, Duke Math. J., 71, 463-473 (1993) ·Zbl 0833.22015 ·doi:10.1215/S0012-7094-93-07119-0
[16]Huxley, M.: Exceptional eigenvalues and congruence subgroups. In: The Selberg Trace Formula and Related Topics. Contemporary Mathematics vol. 53, pp. 341-349 (1986) ·Zbl 0601.10019
[17]Iwaniec, H., Small eigenvalues of Laplacian for \(\Gamma_0(N)\), Acta Arith., 56, 65-82 (1990) ·Zbl 0702.11034 ·doi:10.4064/aa-56-1-65-82
[18]Iwaniec, H.; Kowalski, E., Analytic Number Theory (2004), Providence, RI: AMS Colloquium Publications, Providence, RI ·Zbl 1059.11001
[19]Jacquet, H.; Piatetski-Shapiro, I.; Shalika, J., Conducteur des représentations du groupe linéaire, Math. Ann., 256, 199-214 (1981) ·Zbl 0443.22013 ·doi:10.1007/BF01450798
[20]Jacquet, H.; Shalika, J., On Euler products and the classification of automorphic representations. I, Am. J. Math., 103, 499-558 (1981) ·Zbl 0473.12008 ·doi:10.2307/2374103
[21]Lenstra, NW; Shallit, JO, Continued fractions and linear recurrences, Math. Comput., 61, 351-354 (1993) ·Zbl 0797.11006 ·doi:10.1090/S0025-5718-1993-1192972-X
[22]Li, X.: Upper bounds on \(L\)-functions at the edge of the critical strip. IMRN, pp. 727-755 (2010) ·Zbl 1219.11136
[23]Luo, W.; Rudnick, Z.; Sarnak, P., On the generalized Ramanujan conjecture for \({\rm GL}(n)\), Proc. Sympos. Pure Math., 66, 301-310 (1999) ·Zbl 0965.11023 ·doi:10.1090/pspum/066.2/1703764
[24]Man, S.H.: A density theorem for \({\rm Sp}(4)\). J. Lond Math. Soc
[25]Matz, J., Templier, N.: Sato-Tate equidistribution for families of Hecke-Maass forms on \({\rm SL}(n, {\mathbb{R}})/{\rm SO}(n)\). Algebra Number Theory
[26]Parzanchevsky, O.; Sarnak, P., Super-Golden-Gates for \({\rm PU}(2)\), Adv. Math., 327, 869-901 (2018) ·Zbl 1383.81059 ·doi:10.1016/j.aim.2017.06.022
[27]Sarnak, P.: Statistical properties of eigenvalues of the Hecke operators. In: Analytic Number Theory and Diophantine Problems. Progress in Mathematics, vol. 70, pp. 321-331 (1987) ·Zbl 0628.10028
[28]Sarnak, P.: Diophantine problems and linear groups. In: Proceedings of the ICM Kyoto, pp. 459-471 (1990) ·Zbl 0743.11018
[29]Sarnak, P.: Definition of families of \(L\)-functions. https://publications.ias.edu/sarnak/paper/507 ·Zbl 1088.11067
[30]Sarnak, P.: Letter on optimal strong approximation. https://publications.ias.edu/sarnak/paper/2637
[31]Sarnak, P.: Letter on Solvay-Kitaev theorem and golden gates. https://publications.ias.edu/sarnak/paper/2637
[32]Sarnak, P., Shin, S.W., Templier, N.: Families of \(L\)-functions and their symmetry. In: Families of Automorphic Forms and the Trace Formula, Simons Symposia. Springer, pp. 531-578 (2016) ·Zbl 1417.11078
[33]Sarnak, P.; Xue, X., Bounds for multiplicities of automorphic representations, Duke Math. J., 64, 207-227 (1991) ·Zbl 0741.22010 ·doi:10.1215/S0012-7094-91-06410-0
[34]Stade, E., Mellin transforms of \({\rm GL}(n,{\mathbb{R} })\) Whittaker functions, Am. J. Math., 123, 121-161 (2001) ·Zbl 1017.11022 ·doi:10.1353/ajm.2001.0004
[35]Venkatesh, A., Large sieve inequalities for \({\rm GL}(n)\)-forms in the conductor aspect, Adv. Math., 200, 336-356 (2006) ·Zbl 1139.11026 ·doi:10.1016/j.aim.2005.11.001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp