[1] | Arthur, J.: Eisenstein series and the trace formula. In: Automorphic Forms, Representations and \(L\)-Functions, Corvallis/Oregon 1977. Proceedings of Symposia in Pure Mathematics, vol. 33, pp. 253-274 (1979) ·Zbl 0431.22016 |
[2] | Assing, E., Blomer, V.: The density conjecture for principal congruence subgroups. arXiv:2204.08868 |
[3] | Blomer, V., Applications of the Kuznetsov formula on \({\rm GL}(3)\), Invent. Math., 194, 673-729 (2013) ·Zbl 1292.11064 ·doi:10.1007/s00222-013-0454-3 |
[4] | Blomer, V.; Brumley, F., The role of the Ramanujan conjecture in analytic number theory, Bull. Am. Math. Soc., 50, 267-320 (2013) ·Zbl 1341.11024 ·doi:10.1090/S0273-0979-2013-01404-6 |
[5] | Blomer, V.; Buttcane, J.; Maga, P., Applications of the Kuznetsov formula on \({\rm GL}(3)\): the level aspect, Math. Ann., 369, 723-759 (2017) ·Zbl 1400.11104 ·doi:10.1007/s00208-017-1558-7 |
[6] | Blomer, V.; Buttcane, J.; Raulf, N., A Sato-Tate law for \({\rm GL}(3)\), Commun. Math. Helv., 89, 895-919 (2014) ·Zbl 1317.11053 ·doi:10.4171/CMH/337 |
[7] | Bruggeman, RW; Miatello, RJ, Sum formula for \({\rm SL}_2\) over a number field and Selberg type estimate for exceptional eigenvalues, GAFA, 8, 627-655 (1998) ·Zbl 0924.11039 |
[8] | Bruggeman, RW; Miatello, RJ, Density results for automorphic forms on Hilbert modular groups, GAFA, 13, 681-719 (2003) ·Zbl 1057.11028 |
[9] | Dabrowski, R.; Reeder, M., Kloosterman sets in reductive groups, J. Number Theory, 73, 228-255 (1998) ·Zbl 0919.11055 ·doi:10.1006/jnth.1998.2301 |
[10] | Finis, T., Matz, J.: On the asymptotics of Hecke operators for reductive groups. Math. Ann. 380, 1037-1104 (2021) ·Zbl 1481.43010 |
[11] | da Fonseca, CM; Petronilho, J., Explicit inverses of some tridiagonal matrices, Linear Algebra Appl., 325, 7-21 (2001) ·Zbl 0983.15007 ·doi:10.1016/S0024-3795(00)00289-5 |
[12] | Friedberg, S., Poincaré series for \({\rm GL}(n)\): Fourier expansion, Kloosterman sums, and algebreo-geometric estimates, Math. Z., 196, 165-188 (1987) ·Zbl 0612.10020 ·doi:10.1007/BF01163653 |
[13] | Friedberg, S.; Goldfeld, D., Mellin transforms of Whittaker functions, Bull. Soc. Math. France, 121, 91-107 (1993) ·Zbl 0781.11022 ·doi:10.24033/bsmf.2201 |
[14] | Goldfeld, D.: Automorphic Forms and L-Functions for the Group \({\rm GL}(n, {\mathbb{R}})\). Cambridge Studies in Advanced Mathematics, vol. 99 (2006) ·Zbl 1108.11039 |
[15] | Huntley, J.; Katznelson, Y., Density theorems for congruence groups in real rank 1, Duke Math. J., 71, 463-473 (1993) ·Zbl 0833.22015 ·doi:10.1215/S0012-7094-93-07119-0 |
[16] | Huxley, M.: Exceptional eigenvalues and congruence subgroups. In: The Selberg Trace Formula and Related Topics. Contemporary Mathematics vol. 53, pp. 341-349 (1986) ·Zbl 0601.10019 |
[17] | Iwaniec, H., Small eigenvalues of Laplacian for \(\Gamma_0(N)\), Acta Arith., 56, 65-82 (1990) ·Zbl 0702.11034 ·doi:10.4064/aa-56-1-65-82 |
[18] | Iwaniec, H.; Kowalski, E., Analytic Number Theory (2004), Providence, RI: AMS Colloquium Publications, Providence, RI ·Zbl 1059.11001 |
[19] | Jacquet, H.; Piatetski-Shapiro, I.; Shalika, J., Conducteur des représentations du groupe linéaire, Math. Ann., 256, 199-214 (1981) ·Zbl 0443.22013 ·doi:10.1007/BF01450798 |
[20] | Jacquet, H.; Shalika, J., On Euler products and the classification of automorphic representations. I, Am. J. Math., 103, 499-558 (1981) ·Zbl 0473.12008 ·doi:10.2307/2374103 |
[21] | Lenstra, NW; Shallit, JO, Continued fractions and linear recurrences, Math. Comput., 61, 351-354 (1993) ·Zbl 0797.11006 ·doi:10.1090/S0025-5718-1993-1192972-X |
[22] | Li, X.: Upper bounds on \(L\)-functions at the edge of the critical strip. IMRN, pp. 727-755 (2010) ·Zbl 1219.11136 |
[23] | Luo, W.; Rudnick, Z.; Sarnak, P., On the generalized Ramanujan conjecture for \({\rm GL}(n)\), Proc. Sympos. Pure Math., 66, 301-310 (1999) ·Zbl 0965.11023 ·doi:10.1090/pspum/066.2/1703764 |
[24] | Man, S.H.: A density theorem for \({\rm Sp}(4)\). J. Lond Math. Soc |
[25] | Matz, J., Templier, N.: Sato-Tate equidistribution for families of Hecke-Maass forms on \({\rm SL}(n, {\mathbb{R}})/{\rm SO}(n)\). Algebra Number Theory |
[26] | Parzanchevsky, O.; Sarnak, P., Super-Golden-Gates for \({\rm PU}(2)\), Adv. Math., 327, 869-901 (2018) ·Zbl 1383.81059 ·doi:10.1016/j.aim.2017.06.022 |
[27] | Sarnak, P.: Statistical properties of eigenvalues of the Hecke operators. In: Analytic Number Theory and Diophantine Problems. Progress in Mathematics, vol. 70, pp. 321-331 (1987) ·Zbl 0628.10028 |
[28] | Sarnak, P.: Diophantine problems and linear groups. In: Proceedings of the ICM Kyoto, pp. 459-471 (1990) ·Zbl 0743.11018 |
[29] | Sarnak, P.: Definition of families of \(L\)-functions. https://publications.ias.edu/sarnak/paper/507 ·Zbl 1088.11067 |
[30] | Sarnak, P.: Letter on optimal strong approximation. https://publications.ias.edu/sarnak/paper/2637 |
[31] | Sarnak, P.: Letter on Solvay-Kitaev theorem and golden gates. https://publications.ias.edu/sarnak/paper/2637 |
[32] | Sarnak, P., Shin, S.W., Templier, N.: Families of \(L\)-functions and their symmetry. In: Families of Automorphic Forms and the Trace Formula, Simons Symposia. Springer, pp. 531-578 (2016) ·Zbl 1417.11078 |
[33] | Sarnak, P.; Xue, X., Bounds for multiplicities of automorphic representations, Duke Math. J., 64, 207-227 (1991) ·Zbl 0741.22010 ·doi:10.1215/S0012-7094-91-06410-0 |
[34] | Stade, E., Mellin transforms of \({\rm GL}(n,{\mathbb{R} })\) Whittaker functions, Am. J. Math., 123, 121-161 (2001) ·Zbl 1017.11022 ·doi:10.1353/ajm.2001.0004 |
[35] | Venkatesh, A., Large sieve inequalities for \({\rm GL}(n)\)-forms in the conductor aspect, Adv. Math., 200, 336-356 (2006) ·Zbl 1139.11026 ·doi:10.1016/j.aim.2005.11.001 |