[1] | Akemann, G.; Byun, S-S; Ebke, M., Universality of the number variance in rotational invariant two-dimensional Coulomb gases, J. Stat. Phys., 190, 9 (2023) ·Zbl 07615078 ·doi:10.1007/s10955-022-03005-2 |
[2] | Akemann, G.; Phillips, M. J.; Shifrin, L., Gap probabilities in non-Hermitian random matrix theory, J. Math. Phys., 50, 32 (2009) ·Zbl 1216.60007 ·doi:10.1063/1.3133108 |
[3] | Akemann, G.; Vernizzi, G., Characteristic polynomials of complex random matrix models, Nuclear Phys. B, 660, 532-56 (2003) ·Zbl 1030.82003 ·doi:10.1016/S0550-3213(03)00221-9 |
[4] | Ameur, Y.; Kang, N-G, On a problem for Ward’s equation with a Mittag-Leffler potential, Bull. Sci. Math., 137, 968-75 (2013) ·Zbl 1279.30048 ·doi:10.1016/j.bulsci.2013.09.003 |
[5] | Ameur, Y.; Kang, N-G; Seo, S-M, The random normal matrix model: insertion of a point charge, Potential Analysis (2021) ·Zbl 1508.82046 ·doi:10.1007/s11118-021-09942-z |
[6] | Balogh, F.; Bertola, M.; Lee, S-Y; McLaughlin, K. T-R, Strong asymptotics of the orthogonal polynomials with respect to a measure supported on the plane, Comm. Pure Appl. Math., 68, 112-72 (2015) ·Zbl 1308.42025 ·doi:10.1002/cpa.21541 |
[7] | Bertola, M.; Elias Rebelo, J. G.; Grava, T., Painlevé IV critical asymptotics for orthogonal polynomials in the complex plane, SIGMA, 14, 091 (2018) ·Zbl 1400.33008 ·doi:10.3842/SIGMA.2018.091 |
[8] | Balogh, F.; Grava, T.; Merzi, D., Orthogonal polynomials for a class of measures with discrete rotational symmetries in the complex plane, Constr. Approx., 46, 109-69 (2017) ·Zbl 1375.31003 ·doi:10.1007/s00365-016-9356-0 |
[9] | Bufetov, A. I.; García-Zelada, D.; Lin, Z., Fluctuations of the process of moduli for the Ginibre and hyperbolic ensembles ·Zbl 1532.60099 |
[10] | Byun, S-S; Seo, S-M, Random normal matrices in the almost-circular regime ·Zbl 1539.15041 |
[11] | Charles, L.; Estienne, B., Entanglement entropy and Berezin-Toeplitz operators, Comm. Math. Phys., 376, 521-54 (2020) ·Zbl 1508.81102 ·doi:10.1007/s00220-019-03625-y |
[12] | Charlier, C., Asymptotics of determinants with a rotation-invariant weight and discontinuities along circles, Adv. Math., 408 (2022) ·Zbl 1527.41010 ·doi:10.1016/j.aim.2022.108600 |
[13] | Charlier, C., Large gap asymptotics on annuli in the random normal matrix model ·Zbl 1536.60006 |
[14] | Charlier, C.; Claeys, T., Large gap asymptotics for Airy kernel determinants with discontinuities, Comm. Math. Phys., 375, 1299-339 (2020) ·Zbl 1475.37014 ·doi:10.1007/s00220-019-03538-w |
[15] | Charlier, C.; Doeraene, A., The generating function for the Bessel point process and a system of coupled Painlevé V equations, Random Matrices Theory Appl., 8 (2019) ·Zbl 1422.60013 ·doi:10.1142/S2010326319500084 |
[16] | Charlier, C.; Moreillon, P., On the generating function of the Pearcey process ·Zbl 1535.60082 |
[17] | Chau, L-L; Zaboronsky, O., On the structure of correlation functions in the normal matrix model, Comm. Math. Phys., 196, 203-47 (1998) ·Zbl 0907.35123 ·doi:10.1007/s002200050420 |
[18] | Claeys, T.; Doeraene, A., The generating function for the Airy point process and a system of coupled Painlevé II equations, Stud. Appl. Math., 140, 403-37 (2018) ·Zbl 1419.37063 ·doi:10.1111/sapm.12209 |
[19] | Claeys, TForkel, JKeating, JMoments of Moments of the Characteristic Polynomial of Random Orthogonal and Symplectic Matricespreprint |
[20] | Claeys, T.; Glesner, G.; Minakov, A.; Yang, M., Asymptotics for averages over classical orthogonal ensembles, Int. Math. Res. Not. IMRN, 2022, 7922-66 (2022) ·Zbl 1491.15039 ·doi:10.1093/imrn/rnaa354 |
[21] | Claeys, T.; Its, A.; Krasovsky, I., Emergence of a singularity for Toeplitz determinants and Painlevé V, Duke Math. J., 160, 207-62 (2011) ·Zbl 1298.47039 ·doi:10.1215/00127094-1444207 |
[22] | Claeys, T.; Krasovsky, I., Toeplitz determinants with merging singularities, Duke Math. J., 164, 2897-987 (2015) ·Zbl 1333.15018 ·doi:10.1215/00127094-3164897 |
[23] | Cunden, F. D.; Mezzadri, F.; Vivo, P., Large deviations of radial statistics in the two-dimensional one-component plasma, J. Stat. Phys., 164, 1062-81 (2016) ·Zbl 1364.82062 ·doi:10.1007/s10955-016-1577-x |
[24] | Deaño, A.; Simm, N., Characteristic polynomials of complex random matrices and Painlevé transcendents, Int. Math. Res. Not. IMRN, 2022, 210-64 (2022) ·Zbl 1514.15050 ·doi:10.1093/imrn/rnaa111 |
[25] | Ebrahimi, R.; Zohren, S., On the extreme value statistics of normal random matrices and 2D Coulomb gases: universality and finite N corrections, J. Stat. Mech., 2018 (2018) ·Zbl 1459.82292 ·doi:10.1088/1742-5468/aaa8f3 |
[26] | Estienne, B.; Stéphan, J-M, Entanglement spectroscopy of chiral edge modes in the quantum Hall effect, Phys. Rev. B, 101 (2020) ·doi:10.1103/PhysRevB.101.115136 |
[27] | Fahs, B., Uniform asymptotics of Toeplitz determinants with Fisher-Hartwig singularities, Comm. Math. Phys., 383, 685-730 (2021) ·Zbl 1469.60029 ·doi:10.1007/s00220-021-03943-0 |
[28] | Fenzl, M.; Lambert, G., Precise deviations for disk counting statistics of invariant determinantal processes, Int. Math. Res. Not. IMRN, 2022, 7420-94 (2022) ·Zbl 1494.60051 ·doi:10.1093/imrn/rnaa341 |
[29] | Fischmann, J.; Bruzda, W.; Khoruzhenko, B. A.; Sommers, H-J; Życzkowski, K., Induced Ginibre ensemble of random matrices and quantum operations, J. Phys. A, 45 (2012) ·Zbl 1241.81011 ·doi:10.1088/1751-8113/45/7/075203 |
[30] | Forkel, J.; Keating, J. P., The classical compact groups and Gaussian multiplicative chaos, Nonlinearity, 34, 6050-119 (2021) ·doi:10.1088/1361-6544/ac1164 |
[31] | Forrester, P. J., Some statistical properties of the eigenvalues of complex random matrices, Phys. Lett. A, 169, 21-24 (1992) ·doi:10.1016/0375-9601(92)90798-Q |
[32] | Ginibre, J., Statistical ensembles of complex, quaternion and real matrices, J. Math. Phys., 6, 440-9 (1965) ·Zbl 0127.39304 ·doi:10.1063/1.1704292 |
[33] | Hough, J. B.; Krishnapur, M.; Peres, Y.; Virag, B., Zeros of Gaussian Analytic Functions and Determinantal Point Processes (2010), Providence, RI: American Mathematical Society, Providence, RI |
[34] | Jancovici, B.; Lebowitz, J.; Manificat, G., Large charge fluctuations in classical Coulomb systems, J. Statist. Phys., 72, 773-87 (1993) ·Zbl 1101.82307 ·doi:10.1007/BF01048032 |
[35] | Lacroix-A-Chez-Toine, B.; Majumdar, S. N.; Schehr, G., Entanglement Entropy and Full Counting Statistics for 2 d-Rotating Trapped Fermions, Phys. Rev. A, 99 (2019) ·doi:10.1103/PhysRevA.99.021602 |
[36] | Lacroix-A-Chez-Toine, B.; Garzón, J. A M.; Calva, C. S H.; Castillo, I. P.; Kundu, A.; Majumdar, S. N.; Schehr, G., Intermediate deviation regime for the full eigenvalue statistics in the complex Ginibre ensemble, Phys. Rev. E, 100 (2019) ·doi:10.1103/PhysRevE.100.012137 |
[37] | Lee, S-Y; Riser, R., Fine asymptotic behavior for eigenvalues of random normal matrices: ellipse case, J. Math. Phys., 57 (2016) ·Zbl 1342.82056 ·doi:10.1063/1.4939973 |
[38] | Lee, S-Y; Yang, M., Discontinuity in the asymptotic behavior of planar orthogonal polynomials under a perturbation of the Gaussian weight, Comm. Math. Phys., 355, 303-38 (2017) ·Zbl 1379.33017 ·doi:10.1007/s00220-017-2888-8 |
[39] | Lee, S-Y; Yang, M., Planar orthogonal polynomials as Type II multiple orthogonal polynomials, J. Phys. A, 52 (2019) ·Zbl 1509.33010 ·doi:10.1088/1751-8121/ab1af9 |
[40] | Lee, S-Y; Yang, M., Strong asymptotics of planar orthogonal polynomials: Gaussian weight perturbed by finite number of point charges ·Zbl 1526.30011 |
[41] | Lyu, S.; Chen, Y., Gaussian unitary ensembles with two jump discontinuities, PDEs and the coupled Painlevé II and IV systems, Stud. Appl. Math., 146, 118-38 (2021) ·Zbl 1472.82002 ·doi:10.1111/sapm.12343 |
[42] | Lyu, S.; Chen, Y.; Xu, S-X, Laguerre unitary ensembles with jump discontinuities, PDEs and the coupled Painlevé V system ·Zbl 1518.35523 |
[43] | Mehta, M. L., Random matrices, Pure and Applied Mathematics (Amsterdam), vol 142 (2004), Amsterdam: Elsevier/Academic, Amsterdam ·Zbl 1107.15019 |
[44] | Olver, F W JOlde Daalhuis, A BLozier, D WSchneider, B IBoisvert, R FClark, C WMiller, B RSaunders, B VNIST digital library of mathematical functions Release 1. 0.13 of 2016-09-16(available at: http://dlmf.nist.gov/) |
[45] | Rider, B., Deviations from the circular law, Probab. Theory Related Fields, 130, 337-67 (2004) ·Zbl 1071.82029 ·doi:10.1007/s00440-004-0355-x |
[46] | Saff, E. B.; Totik, V., Logarithmic Potentials With External Fields (Grundlehren der Mathematischen Wissenschaften) (1997), Berlin: Springer, Berlin ·Zbl 0881.31001 |
[47] | Smith, N. R.; Le Doussal, P.; Majumdar, S. N.; Schehr, G., Counting statistics for non-interacting fermions in a d-dimensional potential, Phys. Rev. E, 103 (2021) ·doi:10.1103/PhysRevE.103.L030105 |
[48] | Smith, N. R.; Le Doussal, P.; Majumdar, S. N.; Schehr, G., Counting statistics for non-interacting fermions in a rotating trap, Phys. Rev. A, 105 (2022) ·doi:10.1103/PhysRevA.105.043315 |
[49] | Temme, N. M., Special Functions: An Introduction to the Classical Functions of Mathematical Physics (1996), New York: Wiley, New York ·Zbl 0856.33001 |
[50] | Webb, C.; Wong, M. D., On the moments of the characteristic polynomial of a Ginibre random matrix, Proc. Lond. Math. Soc., 118, 1017-56 (2019) ·Zbl 1447.60031 ·doi:10.1112/plms.12225 |
[51] | Wu, X-B; Xu, S-X, Gaussian unitary ensemble with jump discontinuities and the coupled Painlevé II and IV systems, Nonlinearity, 34, 2070-115 (2021) ·Zbl 1470.34238 ·doi:10.1088/1361-6544/abc598 |