[1] | Alekseevsky, D., Kriegl, A., Losik, M., and Michor, P. W., The Riemannian geometry of orbit spaces. The metric, geodesics, and integrable systems, Publ. Math. Debrecen, 62 (2001), pp. 1-30. ·Zbl 1026.57028 |
[2] | Arsigny, V., Fillard, P., Pennec, X., and Ayache, N., Log-Euclidean metrics for fast and simple calculus on diffusion tensors, Magnet. Reson. Med., 56 (2006), pp. 411-421. |
[3] | Bhatia, R., Jain, T., and Lim, Y., On the Bures-Wasserstein distance between positive definite matrices, Expo. Math., 37 (2019), pp. 165-191. ·Zbl 1437.15044 |
[4] | Billera, L. J., Holmes, S. P., and Vogtmann, K., Geometry of the space of phylogenetic trees, Adv. Appl. Math., 27 (2001), pp. 733-767. ·Zbl 0995.92035 |
[5] | Bourbaki, N., General Topology, Springer, Berlin, 1971. |
[6] | Bridson, M. R. and Haefliger, A., Metric Spaces of Non-Positive Curvature, , Springer, Berlin, 1999. ·Zbl 0988.53001 |
[7] | Bures, D., An extension of Kakutani’s theorem on infinite product measures to the tensor product of semifinite w*-algebras, Trans. Amer. Math. Soc., 135 (1969), pp. 199-212. ·Zbl 0176.11402 |
[8] | Calissano, A., Feragen, A., and Vantini, S., Populations of Unlabeled Networks: Graph Space Geometry and Geodesic Principal Components, MOX report, 2020. ·Zbl 1520.62100 |
[9] | do Carmo, M. P., Riemannian Geometry, Math. Theory Appl., Birkhäuser Boston, Cambridge, MA, 1992. ·Zbl 0752.53001 |
[10] | Dowson, D. and Landau, B., The Fréchet distance between multivariate normal distributions, J. Multivariate Anal., 12 (1982), pp. 450-455. ·Zbl 0501.62038 |
[11] | Feragen, A., Lauze, F., Lo, P., de Bruijne, M., and Nielsen, M., Geometries on spaces of treelike shapes, in Proceedings of the 10th Asian Conference on Computer Vision: Part II, ACCV’10, , Springer, Berlin, 2010, pp. 173-160. |
[12] | Feragen, A. and Nye, T., Statistics on stratified spaces, in Riemannian Geometric Statistics in Medical Image Analysis, Pennec, X., Sommer, S., and Fletcher, T., eds., Academic Press, New York, 2020, pp. 299-342. ·Zbl 1453.62559 |
[13] | Fillard, P., Pennec, X., Arsigny, V., and Ayache, N., Clinical DT-MRI estimation, smoothing, and fiber tracking with log-Euclidean metrics, IEEE Trans. Med. Imaging, 26 (2007), pp. 1472-1482. |
[14] | Fletcher, P. T. and Joshi, S., Riemannian geometry for the statistical analysis of diffusion tensor data, Signal Process., 87 (2007), pp. 250-262. ·Zbl 1186.94126 |
[15] | Garba, M. K., Nye, T. M. W., Lueg, J., and Huckemann, S. F., Information geometry for phylogenetic trees, J. Math. Biol., 82 (2021), 19. ·Zbl 1460.92141 |
[16] | Groetzner, P. and Dür, M., A factorization method for completely positive matrices, Linear Algebra Appl., 591 (2020), pp. 1-24. ·Zbl 1442.90138 |
[17] | Groisser, D., Jung, S., and Schwartzman, A., Geometric foundations for scaling-rotation statistics on symmetric positive definite matrices: Minimal smooth scaling-rotation curves in low dimensions, Electron. J. Stat., 11 (2017), pp. 1092-1159, doi:10.1214/17-EJS1250. ·Zbl 1361.53061 |
[18] | Hà Quang, M., San Biagio, M., and Murino, V., Log-Hilbert-Schmidt metric between positive definite operators on Hilbert spaces, Adv. Neural Inf. Process. Syst., 27 (2014). |
[19] | Helstrom, C. W., Minimum mean-squared error of estimates in quantum statistics, Phys. Lett. A, 25 (1967), pp. 101-102. |
[20] | Kendall, D. G., Shape manifolds, procrustean metrics, and complex projective spaces, Bull. Lond. Math. Soc., 16 (1984), pp. 81-121. ·Zbl 0579.62100 |
[21] | Lee, J. M., Introduction to Smooth Manifolds, 2nd ed., Springer, New York, 2012. |
[22] | Lenglet, C., Rousson, M., Deriche, R., and Faugeras, O., Statistics on the manifold of multivariate normal distributions: Theory and application to diffusion tensor MRI processing, J. Math. Imaging Vision, 25 (2006), pp. 423-444. ·Zbl 1478.62387 |
[23] | Li, P., Wang, Q., Zeng, H., and Zhang, L., Local log-Euclidean multivariate Gaussian descriptor and its application to image classification, IEEE Trans. Pattern Anal., 39 (2017), pp. 803-817. |
[24] | Lin, Z., Riemannian geometry of symmetric positive definite matrices via Cholesky decomposition, SIAM J. Matrix Anal. Appl., 40 (2019), pp. 1353-1370. ·Zbl 1554.58007 |
[25] | Malagò, L., Montrucchio, L., and Pistone, G., Wasserstein Riemannian geometry of Gaussian densities, Inf. Geom., 1 (2018), pp. 137-179. ·Zbl 1408.53058 |
[26] | Massart, E. and Absil, P.-A., Quotient geometry with simple geodesics for the manifold of fixed-rank positive-semidefinite matrices, SIAM J. Matrix Anal. Appl., 41 (2020), pp. 171-198. ·Zbl 1433.53064 |
[27] | Massart, E., Hendrickx, J. M., and Absil, P.-A., Curvature of the manifold of fixed-rank positive-semidefinite matrices endowed with the Bures-Wasserstein metric, in Proceedings of the 4th Conference on Geometric Science of Information, , , Nielsen, F. and Barbaresco, F., eds., Springer, New York, 2019, pp. 739-748. ·Zbl 1458.53028 |
[28] | Michor, P. W., Topics in Differential Geometry, , American Mathematical Society, Providence, RI, 2008. ·Zbl 1175.53002 |
[29] | Michor, P. W., Petz, D., and Andai, A., The curvature of the Bogoliubov-Kubo-Mori scalar product on matrices, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 3 (2000), pp. 1-14. |
[30] | Moakher, M., A differential geometric approach to the geometric mean of symmetric positive-definite matrices, SIAM J. Matrix Anal. Appl., 26 (2005), pp. 735-747. ·Zbl 1079.47021 |
[31] | Olkin, I. and Pukelsheim, F., The distance between two random vectors with given dispersion matrices, Linear Algebra Appl., 48 (1982), pp. 257-263. ·Zbl 0527.60015 |
[32] | O’Neill, B., The fundamental equations of a submersion, Michigan Math. J., 13 (1966), pp. 459-469. ·Zbl 0145.18602 |
[33] | Oostrum, J. V., Bures-Wasserstein geometry for positive-definite Hermitian matrices and their trace-one subset, Inf. Geom., 5 (2022), pp. 405-425. ·Zbl 1506.53020 |
[34] | Paulin, F., Groupes et géométries, Département de Mathématiques d’Orsay, Université Paris Sud, 2014. |
[35] | Pennec, X., Fillard, P., and Ayache, N., A Riemannian framework for tensor computing, Int. J. Comput. Vis., 66 (2006), pp. 41-66. ·Zbl 1287.53031 |
[36] | Petz, D. and Toth, G., The Bogoliubov inner product in quantum statistics, Lett. Math. Phys., 27 (1993), pp. 205-216. ·Zbl 0773.53056 |
[37] | Siegel, C. L., Symplectic geometry, Amer. J. Math., 65 (1943), pp. 1-86. ·Zbl 0063.07003 |
[38] | Skovgaard, L. T., A Riemannian geometry of the multivariate normal model, Scand. J. Stat., 11 (1984), pp. 211-223. ·Zbl 0579.62033 |
[39] | Takatsu, A., On Wasserstein geometry of Gaussian measures, in Probabilistic Approach to Geometry, , Kotani, M., Hino, M., and Kumagai, T., eds., Mathematical Society of Japan, Tokyo, 2010, pp. 463-472. ·Zbl 1206.60016 |
[40] | Takatsu, A., Wasserstein geometry of Gaussian measures, Osaka J. Math., 48 (2011), pp. 1005-1026. ·Zbl 1245.60013 |
[41] | Thanwerdas, Y. and Pennec, X., Geodesics and curvature of the quotient-affine metrics on full-rank correlation matrices, in Proceedings of the 5th Conference on Geometric Science of Information, , , Springer, New York, 2021, pp. 93-102. ·Zbl 07495206 |
[42] | Thanwerdas, Y. and Pennec, X., O(n)-invariant Riemannian metrics on SPD matrices, Linear Algebra Appl., 661 (2023), pp. 163-201. ·Zbl 1507.15020 |
[43] | Thanwerdas, Y. and Pennec, X., Theoretically and computationally convenient geometries on full-rank correlation matrices, SIAM J. Matrix Anal. Appl., 43 (2023), pp. 1851-1872. ·Zbl 1511.53003 |