Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Gromov-Witten theory of complete intersections via nodal invariants.(English)Zbl 1525.14068

The Gromov-Witten invariants (GWIs) of a smooth projective variety \(X\) over \(\mathbb{C}\) are rational numbers defined by intersection theory on the moduli spaces of stable maps to \(X\) using integration over virtual fundamental classes of moduli spaces, evaluation morphisms at marked points and first Chern classes of cotangent line bundles at marked points. Providing an effective algorithm to compute GWIs is generally challenging. For projective spaces, or more generally for homogeneous varieties, they can be computed using a localization formula and the calculation of Hodge integrals on the moduli spaces of curves. For curves they have been computed by Okounkov-Pandharipande using degeneration techniques, monodromy constraints, and Hurwitz theory. The authors provide an inductive algorithm computing GWIs in all genera with arbitrary insertions of all smooth complete intersections in projective space. They also prove that all Gromov-Witten classes of all smooth complete intersections in projective space belong to the tautological ring of the moduli space of stable curves. The main idea is to show that invariants with insertions of primitive cohomology classes are controlled by their monodromy and by invariants defined without primitive insertions but with imposed nodes in the domain curve. To compute these nodal GWIs, they introduce the new notion of nodal relative GWIs. They prove a nodal degeneration formula and a relative splitting formula. These results for nodal relative Gromov-Witten theory are stated in complete generality and are of independent interest.

MSC:

14N35 Gromov-Witten invariants, quantum cohomology, Gopakumar-Vafa invariants, Donaldson-Thomas invariants (algebro-geometric aspects)
53D45 Gromov-Witten invariants, quantum cohomology, Frobenius manifolds

Cite

References:

[1]Abramovich, D.; Cadman, C.; Fantechi, B.; Wise, J., Expanded degenerations and pairs, Comm. Algebra., 41, 6, 2346-2386, 2013 ·Zbl 1326.14020
[2]Abramovich, D.; Cadman, C.; Wise, J., Relative and orbifold Gromov-Witten invariants, Algebr. Geom., 4, 4, 472-500, 2017 ·Zbl 1493.14093
[3]Abramovich, D.; Marcus, S.; Wise, J., Comparison theorems for Gromov-Witten invariants of smooth pairs and of degenerations, Ann. Inst. Fourier (Grenoble), 64, 4, 1611-1667, 2014 ·Zbl 1317.14123
[4]Argüz, H.; Bousseau, P.; Pandharipande, R.; Zvonkine, D.
[5]Beauville, A., Le groupe de monodromie des familles universelles d’hypersurfaces et d’intersections complètes, Complex analysis and algebraic geometry (Göttingen, 1985). Lecture Notes in Math.ematics, 1194, 8-18, 1986, Springer: Berlin ·Zbl 0603.14011
[6]Beauville, A., Quantum cohomology of complete intersections, R.C.P. 25, vol. 48, Prépubl.ication de l’Institut de Recherche Mathématique Avancée, 1997/42, 57-68, 1997, Univ. Louis Pasteur: Strasbourg ·Zbl 0924.00061
[7]Behrend, K., Gromov-Witten invariants in algebraic geometry, Invent. Math., 127, 3, 601-617, 1997 ·Zbl 0909.14007
[8]Behrend, K., The product formula for Gromov-Witten invariants, J. Algebraic Geom., 8, 3, 529-541, 1999 ·Zbl 0938.14032
[9]Behrend, K.; Fantechi, B., The intrinsic normal cone, Invent. Math., 128, 1, 45-88, 1997 ·Zbl 0909.14006
[10]Behrend, K.; Manin, Y., Stacks of stable maps and Gromov- Witten invariants, Duke Math. J., 85, 1, 1-60, 1996 ·Zbl 0872.14019
[11]Bousseau, P., Tropical refined curve counting from higher genera and lambda classes, Invent. Math., 215, 1, 1-79, 2019 ·Zbl 07015696
[12]Buch, A.; Pandharipande, R., Tevelev degrees in Gromov-Witten theory, 2021
[13]Chang, H.‐L.; Guo, S.; Li, J., BCOV’s Feynman rule of quintic 3‐folds, 2018 ·Zbl 1475.14110
[14]Chang, H.‐L.; Li, J.; Li, W.‐P.; Liu, C.‐C. M., An effective theory of GW and FJRW invariants of quintics Calabi-Yau manifolds, J. Differential Geom., 120, 2, 251-306, 2022 ·Zbl 1490.14091
[15]Clemens, H., Degeneration of Kähler manifolds, Duke Math. J., 44, 2, 215-290, 1977 ·Zbl 0353.14005
[16]Collino, A.; Jinzenji, M., On the structure of the small quantum cohomology rings of projective hypersurfaces, Comm. Math. Phys., 206, 1, 157-183, 1999 ·Zbl 0953.14037
[17]Costello, K., Higher genus Gromov-Witten invariants as genus zero invariants of symmetric products, Ann. of Math. (2)., 164, 2, 561-601, 2006 ·Zbl 1209.14046
[18]Cox, D.; Katz, S., Mirror symmetry and algebraic geometry. Mathematical Surveys and Monographs, 68, 1999, Amer. Math. Soc: Providence, RI ·Zbl 0951.14026
[19]Deligne, P., La conjecture de Weil, II, Inst. Hautes Études Sci. Publ. Math., 52, 137-252, 1980 ·Zbl 0456.14014
[20]Deligne, P.; Katz, N., Groupes de Monodromie en Géométrie Algébrique (SGA VII, 2). Lecture Notes in Math., 340, 1973
[21]Faber, C.; Pandharipande, R., Hodge integrals and Gromov-Witten theory, Invent. Math., 139, 1, 173-199, 2000 ·Zbl 0960.14031
[22]Faber, C.; Pandharipande, R., Relative maps and tautological classes, J. Eur. Math. Soc. (JEMS), 7, 1, 13-49, 2005 ·Zbl 1084.14054
[23]Faber, C.; Pandharipande, R., Tautological and non‐tautological cohomology of the moduli space of curves, Handbook of moduli, vol. I. Advanced Lectures in Mathematics (ALM), 24, 293-330, 2013, Int. Press: Somerville, MA ·Zbl 1322.14046
[24]Fan, H., Chern classes and Gromov-Witten theory of projective bundles, Amer. J. Math., 143, 3, 811-832, 2021 ·Zbl 1467.14016
[25]Fan, H.; Lee, Y.‐P., Towards a quantum Lefschetz hyperplane theorem in all genera, Geom. Topol., 23, 1, 493-512, 2019 ·Zbl 1440.14251
[26]Fan, H.; Lee, Y.‐P., Variations on the theme of quantum Lefschetz, Singularities, mirror symmetry, and the gauged linear sigma model. Contemporary Mathematics, 763, 171-181, 2021, Amer. Math. Soc: Providence, RI ·Zbl 1515.14058
[27]Fulton, W., Intersection theory. 2nd edn., 1998, Springer: Berlin ·Zbl 0885.14002
[28]Fulton, W.; Harris, J., Representation theory. Graduate Texts in Mathematics, 129, 1991, Springer: New York ·Zbl 0744.22001
[29]Fulton, W.; Pandharipande, R., Notes on stable maps and quantum cohomology, Algebraic geometry—Santa Cruz 1995. Proc. Sympos. Pure Math., 62, 45-96, 1997, Amer. Math. Soc: Providence, RI ·Zbl 0898.14018
[30]Gathmann, A., Gromov-Witten invariants of hypersurfaces, 2003, University of Kaiserslautern
[31]Givental, A., A mirror theorem for toric complete intersections, Topological field theory, primitive forms and related topics (Kyoto, 1996). Progress in Mathematics, 160, 141-175, 1998, Birkhäuser Boston: Boston, MA ·Zbl 0936.14031
[32]Graber, T.; Pandharipande, R., Localization of virtual classes, Invent. Math., 135, 2, 487-518, 1999 ·Zbl 0953.14035
[33]Graber, T.; Vakil, R., Relative virtual localization and vanishing of tautological classes on moduli spaces of curves, Duke Math. J., 130, 1, 1-37, 2005 ·Zbl 1088.14007
[34]Grothendieck, A., Groupes de Monodromie en Géométrie Algébrique (SGA VII, 1). Lecture Notes in Mathematics, 288, 1973, Springer: Berlin
[35]Guo, S.; Janda, F.; Ruan, Y., Structure of higher genus Gromov‐Witten invariants of quintic 3‐folds, 2018
[36]Hanlon, P.; Wales, D., On the decomposition of Brauer’s centralizer algebras, J. Algebra., 121, 2, 409-445, 1989 ·Zbl 0695.20026
[37]Herr, L.; Molcho, S.; Pandharipande, R.; Wise, J.
[38]Hu, X., On the big quantum cohomology of Fano complete intersections, 2015
[39]Hu, X., Big quantum cohomology of even dimensional intersections of two quadrics, 2021
[40]Ionel, E.‐N.; Parker, T. H., Relative Gromov-Witten invariants, Ann. of Math. (2), 157, 1, 45-96, 2003 ·Zbl 1039.53101
[41]Janda, F., Gromov-Witten theory of target curves and the tautological ring, Michigan Math. J., 66, 4, 683-698, 2017 ·Zbl 1388.14150
[42]Janda, F.; Pandharipande, R.; Pixton, A.; Zvonkine, D., Double ramification cycles with target varieties, J. Topol., 13, 4, 1725-1766, 2020 ·Zbl 1467.14131
[43]Kontsevich, M., Intersection theory on the moduli space of curves and the matrix Airy function, Comm. Math. Phys., 147, 1, 1-23, 1992 ·Zbl 0756.35081
[44]Kontsevich, M., Enumeration of rational curves via torus actions, The moduli space of curves, 335-368, 1995, Springer: Berlin ·Zbl 0885.14028
[45]Kontsevich, M.; Manin, Y., Gromov-Witten classes, quantum cohomology, and enumerative geometry, Comm. Math. Phys., 164, 3, 525-562, 1994 ·Zbl 0853.14020
[46]Kresch, A., Cycle groups for Artin stacks, Invent. Math., 138, 3, 495-536, 1999 ·Zbl 0938.14003
[47]Landman, A., On the Picard‐Lefschetz transformation for algebraic manifolds acquiring general singularities, Trans. Amer. Math. Soc., 181, 89-126, 1973 ·Zbl 0284.14005
[48]Lefschetz, S., On certain numerical invariants of algebraic varieties with application to abelian varieties, Trans. Amer. Math. Soc., 22, 3, 327-406, 1921 ·JFM 48.0428.03
[49]Li, A.‐M.; Ruan, Y., Symplectic surgery and Gromov-Witten invariants of Calabi‐Yau 3‐folds, Invent. Math., 145, 1, 151-218, 2001 ·Zbl 1062.53073
[50]Li, J., Stable morphisms to singular schemes and relative stable morphisms, J. Differential Geom., 57, 3, 509-578, 2001 ·Zbl 1076.14540
[51]Li, J., A degeneration formula of GW‐invariants, J. Differential Geom., 60, 2, 199-293, 2002 ·Zbl 1063.14069
[52]Lian, B.; Liu, K.; Yau, S.‐T., Mirror principle I, Asian J. Math., 1, 4, 729-763, 1997 ·Zbl 0953.14026
[53]Lian, C.; Pandharipande, R., Enumerativity of virtual Tevelev degrees, 2021
[54]Liu, C.‐H.; Yau, S.‐T., A degeneration formula of Gromov-Witten invariants with respect to a curve class for degenerations from blow‐ups, 2004
[55]Macdonald, I., Symmetric functions and Hall polynomials. 2nd edn.. Oxford Mathematical Monographs, 1998, Oxford University Press: New York ·Zbl 0899.05068
[56]Manolache, C., Rational Gromov-Witten invariants of higher codimensional subvarieties, Rev. Roumaine Math. Pures Appl., 52, 2, 231-258, 2007 ·Zbl 1155.14311
[57]Manolache, C., Virtual pull‐backs, J. Algebraic Geom., 21, 201-245, 2012 ·Zbl 1328.14019
[58]Maulik, D.; Nekrasov, N.; Okounkov, A.; Pandharipande, R., Gromov-Witten theory and Donaldson-Thomas theory, I, Compos. Math., 142, 5, 1263-1285, 2006 ·Zbl 1108.14046
[59]Maulik, D.; Nekrasov, N.; Okounkov, A.; Pandharipande, R., Gromov-Witten theory and Donaldson-Thomas theory, II, Compos. Math., 142, 5, 1286-1304, 2006 ·Zbl 1108.14047
[60]Maulik, D.; Pandharipande, R., A topological view of Gromov-Witten theory, Topology, 45, 5, 887-918, 2006 ·Zbl 1112.14065
[61]Maulik, D.; Pandharipande, R., New calculations in Gromov-Witten theory, Pure Appl. Math. Q., 4, 2, 469-500, 2008 ·Zbl 1156.14042
[62]Maulik, D.; Pandharipande, R.; Thomas, R., Curves on \(K3\) surfaces and modular forms, J. Topol., 3, 4, 937-996, 2010 ·Zbl 1207.14058
[63]Mumford, D., Towards an enumerative geometry of the moduli space of curves, Arithmetic and geometry, v, Progr.ess in Mathematics, 36, 271-328, 1983, Birkhäuser: Boston, MA ·Zbl 0554.14008
[64]Oberdieck, G., Marked relative invariants and GW/PT correspondences, 2021
[65]Okounkov, A.; Pandharipande, R., The equivariant Gromov-Witten theory of \(\mathbb{P}^1\), Ann. of Math. (2), 163, 2, 561-605, 2006 ·Zbl 1105.14077
[66]Okounkov, A.; Pandharipande, R., Gromov-Witten theory, Hurwitz theory, and completed cycles, Ann. of Math. (2), 163, 2, 517-560, 2006 ·Zbl 1105.14076
[67]Okounkov, A.; Pandharipande, R., Virasoro constraints for target curves, Invent. Math., 163, 1, 47-108, 2006 ·Zbl 1140.14047
[68]Okounkov, A.; Vershik, A., A new approach to representation theory of symmetric groups. II, Zap. Nauchn. Sem. S.‐Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 307, 57-98, 2004 ·Zbl 1083.20502
[69]Pandharipande, R., A calculus for the moduli space of curves, Algebraic geometry: Salt Lake City 2015, 97, 459-487, 2018, Proc. Sympos. Pure Math., Amer. Math. Soc: Providence, RI ·Zbl 1451.14090
[70]Pandharipande, R.; Pixton, A., Gromov-Witten/Pairs correspondence for the quintic 3‐fold, J. Amer. Math. Soc., 30, 2, 389-449, 2017 ·Zbl 1360.14134
[71]Popa, A., The genus one Gromov-Witten invariants of Calabi‐Yau complete intersections, Trans. Amer. Math. Soc., 365, 3, 1149-1181, 2013 ·Zbl 1273.14116
[72]Procesi, C., Lie groups. Universitext, 2007, Springer: New York ·Zbl 1154.22001
[73]Stanley, R., Enumerative combinatorics. Cambridge Studies in Advanced Mathematics, 62, 1999, Cambridge University Press: Cambridge ·Zbl 0928.05001
[74]Tavakol, M., The tautological ring of the moduli space \(M^{rt}_{2,n}\), Int. Math. Res. Not. IMRN, 24, 6661-6683, 2014 ·Zbl 1442.14095
[75]Tehrani, M. F.; Zinger, A., On the rim tori refinement of relative Gromov-Witten invariants, Commun. Contemp. Math., 23, 5, 2021 ·Zbl 1520.53077 ·doi:10.1142/S0219199720500510
[76]Teleman, C., The structure of 2D semi‐simple field theories, Invent. Math., 188, 3, 525-588, 2012 ·Zbl 1248.53074
[77]The Stacks Project Authors, Stacks project, 2018
[78]Vistoli, A., Intersection theory on algebraic stacks and on their moduli spaces, Invent. Math., 97, 3, 613-670, 1989 ·Zbl 0694.14001
[79]Witten, E., Two‐dimensional gravity and intersection theory on moduli space. Surveys in differential geometry (Cambridge, MA, 1990), 243-310, 1991, Lehigh University: Bethlehem, PA ·Zbl 0757.53049
[80]Zhao, Y., Young tableaux and the representations of the symmetric group, Harvard College Math. Rev., 2, 33-45, 2008
[81]Zinger, A., The reduced genus 1 Gromov-Witten invariants of Calabi-Yau hypersurfaces, J. Amer. Math. Soc., 22, 3, 691-737, 2009 ·Zbl 1206.14081
[82]Zinger, A., The genus 0 Gromov-Witten invariants of projective complete intersections, Geom. Topol., 18, 2, 1035-1114, 2014 ·Zbl 1408.14183
[83]Zinn‐Justin, P., Jucys-Murphy elements and Weingarten matrices, Lett. Math. Phys., 91, 2, 119-127, 2010 ·Zbl 1283.05269
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp