[1] | Abramovich, D.; Cadman, C.; Fantechi, B.; Wise, J., Expanded degenerations and pairs, Comm. Algebra., 41, 6, 2346-2386, 2013 ·Zbl 1326.14020 |
[2] | Abramovich, D.; Cadman, C.; Wise, J., Relative and orbifold Gromov-Witten invariants, Algebr. Geom., 4, 4, 472-500, 2017 ·Zbl 1493.14093 |
[3] | Abramovich, D.; Marcus, S.; Wise, J., Comparison theorems for Gromov-Witten invariants of smooth pairs and of degenerations, Ann. Inst. Fourier (Grenoble), 64, 4, 1611-1667, 2014 ·Zbl 1317.14123 |
[4] | Argüz, H.; Bousseau, P.; Pandharipande, R.; Zvonkine, D. |
[5] | Beauville, A., Le groupe de monodromie des familles universelles d’hypersurfaces et d’intersections complètes, Complex analysis and algebraic geometry (Göttingen, 1985). Lecture Notes in Math.ematics, 1194, 8-18, 1986, Springer: Berlin ·Zbl 0603.14011 |
[6] | Beauville, A., Quantum cohomology of complete intersections, R.C.P. 25, vol. 48, Prépubl.ication de l’Institut de Recherche Mathématique Avancée, 1997/42, 57-68, 1997, Univ. Louis Pasteur: Strasbourg ·Zbl 0924.00061 |
[7] | Behrend, K., Gromov-Witten invariants in algebraic geometry, Invent. Math., 127, 3, 601-617, 1997 ·Zbl 0909.14007 |
[8] | Behrend, K., The product formula for Gromov-Witten invariants, J. Algebraic Geom., 8, 3, 529-541, 1999 ·Zbl 0938.14032 |
[9] | Behrend, K.; Fantechi, B., The intrinsic normal cone, Invent. Math., 128, 1, 45-88, 1997 ·Zbl 0909.14006 |
[10] | Behrend, K.; Manin, Y., Stacks of stable maps and Gromov- Witten invariants, Duke Math. J., 85, 1, 1-60, 1996 ·Zbl 0872.14019 |
[11] | Bousseau, P., Tropical refined curve counting from higher genera and lambda classes, Invent. Math., 215, 1, 1-79, 2019 ·Zbl 07015696 |
[12] | Buch, A.; Pandharipande, R., Tevelev degrees in Gromov-Witten theory, 2021 |
[13] | Chang, H.‐L.; Guo, S.; Li, J., BCOV’s Feynman rule of quintic 3‐folds, 2018 ·Zbl 1475.14110 |
[14] | Chang, H.‐L.; Li, J.; Li, W.‐P.; Liu, C.‐C. M., An effective theory of GW and FJRW invariants of quintics Calabi-Yau manifolds, J. Differential Geom., 120, 2, 251-306, 2022 ·Zbl 1490.14091 |
[15] | Clemens, H., Degeneration of Kähler manifolds, Duke Math. J., 44, 2, 215-290, 1977 ·Zbl 0353.14005 |
[16] | Collino, A.; Jinzenji, M., On the structure of the small quantum cohomology rings of projective hypersurfaces, Comm. Math. Phys., 206, 1, 157-183, 1999 ·Zbl 0953.14037 |
[17] | Costello, K., Higher genus Gromov-Witten invariants as genus zero invariants of symmetric products, Ann. of Math. (2)., 164, 2, 561-601, 2006 ·Zbl 1209.14046 |
[18] | Cox, D.; Katz, S., Mirror symmetry and algebraic geometry. Mathematical Surveys and Monographs, 68, 1999, Amer. Math. Soc: Providence, RI ·Zbl 0951.14026 |
[19] | Deligne, P., La conjecture de Weil, II, Inst. Hautes Études Sci. Publ. Math., 52, 137-252, 1980 ·Zbl 0456.14014 |
[20] | Deligne, P.; Katz, N., Groupes de Monodromie en Géométrie Algébrique (SGA VII, 2). Lecture Notes in Math., 340, 1973 |
[21] | Faber, C.; Pandharipande, R., Hodge integrals and Gromov-Witten theory, Invent. Math., 139, 1, 173-199, 2000 ·Zbl 0960.14031 |
[22] | Faber, C.; Pandharipande, R., Relative maps and tautological classes, J. Eur. Math. Soc. (JEMS), 7, 1, 13-49, 2005 ·Zbl 1084.14054 |
[23] | Faber, C.; Pandharipande, R., Tautological and non‐tautological cohomology of the moduli space of curves, Handbook of moduli, vol. I. Advanced Lectures in Mathematics (ALM), 24, 293-330, 2013, Int. Press: Somerville, MA ·Zbl 1322.14046 |
[24] | Fan, H., Chern classes and Gromov-Witten theory of projective bundles, Amer. J. Math., 143, 3, 811-832, 2021 ·Zbl 1467.14016 |
[25] | Fan, H.; Lee, Y.‐P., Towards a quantum Lefschetz hyperplane theorem in all genera, Geom. Topol., 23, 1, 493-512, 2019 ·Zbl 1440.14251 |
[26] | Fan, H.; Lee, Y.‐P., Variations on the theme of quantum Lefschetz, Singularities, mirror symmetry, and the gauged linear sigma model. Contemporary Mathematics, 763, 171-181, 2021, Amer. Math. Soc: Providence, RI ·Zbl 1515.14058 |
[27] | Fulton, W., Intersection theory. 2nd edn., 1998, Springer: Berlin ·Zbl 0885.14002 |
[28] | Fulton, W.; Harris, J., Representation theory. Graduate Texts in Mathematics, 129, 1991, Springer: New York ·Zbl 0744.22001 |
[29] | Fulton, W.; Pandharipande, R., Notes on stable maps and quantum cohomology, Algebraic geometry—Santa Cruz 1995. Proc. Sympos. Pure Math., 62, 45-96, 1997, Amer. Math. Soc: Providence, RI ·Zbl 0898.14018 |
[30] | Gathmann, A., Gromov-Witten invariants of hypersurfaces, 2003, University of Kaiserslautern |
[31] | Givental, A., A mirror theorem for toric complete intersections, Topological field theory, primitive forms and related topics (Kyoto, 1996). Progress in Mathematics, 160, 141-175, 1998, Birkhäuser Boston: Boston, MA ·Zbl 0936.14031 |
[32] | Graber, T.; Pandharipande, R., Localization of virtual classes, Invent. Math., 135, 2, 487-518, 1999 ·Zbl 0953.14035 |
[33] | Graber, T.; Vakil, R., Relative virtual localization and vanishing of tautological classes on moduli spaces of curves, Duke Math. J., 130, 1, 1-37, 2005 ·Zbl 1088.14007 |
[34] | Grothendieck, A., Groupes de Monodromie en Géométrie Algébrique (SGA VII, 1). Lecture Notes in Mathematics, 288, 1973, Springer: Berlin |
[35] | Guo, S.; Janda, F.; Ruan, Y., Structure of higher genus Gromov‐Witten invariants of quintic 3‐folds, 2018 |
[36] | Hanlon, P.; Wales, D., On the decomposition of Brauer’s centralizer algebras, J. Algebra., 121, 2, 409-445, 1989 ·Zbl 0695.20026 |
[37] | Herr, L.; Molcho, S.; Pandharipande, R.; Wise, J. |
[38] | Hu, X., On the big quantum cohomology of Fano complete intersections, 2015 |
[39] | Hu, X., Big quantum cohomology of even dimensional intersections of two quadrics, 2021 |
[40] | Ionel, E.‐N.; Parker, T. H., Relative Gromov-Witten invariants, Ann. of Math. (2), 157, 1, 45-96, 2003 ·Zbl 1039.53101 |
[41] | Janda, F., Gromov-Witten theory of target curves and the tautological ring, Michigan Math. J., 66, 4, 683-698, 2017 ·Zbl 1388.14150 |
[42] | Janda, F.; Pandharipande, R.; Pixton, A.; Zvonkine, D., Double ramification cycles with target varieties, J. Topol., 13, 4, 1725-1766, 2020 ·Zbl 1467.14131 |
[43] | Kontsevich, M., Intersection theory on the moduli space of curves and the matrix Airy function, Comm. Math. Phys., 147, 1, 1-23, 1992 ·Zbl 0756.35081 |
[44] | Kontsevich, M., Enumeration of rational curves via torus actions, The moduli space of curves, 335-368, 1995, Springer: Berlin ·Zbl 0885.14028 |
[45] | Kontsevich, M.; Manin, Y., Gromov-Witten classes, quantum cohomology, and enumerative geometry, Comm. Math. Phys., 164, 3, 525-562, 1994 ·Zbl 0853.14020 |
[46] | Kresch, A., Cycle groups for Artin stacks, Invent. Math., 138, 3, 495-536, 1999 ·Zbl 0938.14003 |
[47] | Landman, A., On the Picard‐Lefschetz transformation for algebraic manifolds acquiring general singularities, Trans. Amer. Math. Soc., 181, 89-126, 1973 ·Zbl 0284.14005 |
[48] | Lefschetz, S., On certain numerical invariants of algebraic varieties with application to abelian varieties, Trans. Amer. Math. Soc., 22, 3, 327-406, 1921 ·JFM 48.0428.03 |
[49] | Li, A.‐M.; Ruan, Y., Symplectic surgery and Gromov-Witten invariants of Calabi‐Yau 3‐folds, Invent. Math., 145, 1, 151-218, 2001 ·Zbl 1062.53073 |
[50] | Li, J., Stable morphisms to singular schemes and relative stable morphisms, J. Differential Geom., 57, 3, 509-578, 2001 ·Zbl 1076.14540 |
[51] | Li, J., A degeneration formula of GW‐invariants, J. Differential Geom., 60, 2, 199-293, 2002 ·Zbl 1063.14069 |
[52] | Lian, B.; Liu, K.; Yau, S.‐T., Mirror principle I, Asian J. Math., 1, 4, 729-763, 1997 ·Zbl 0953.14026 |
[53] | Lian, C.; Pandharipande, R., Enumerativity of virtual Tevelev degrees, 2021 |
[54] | Liu, C.‐H.; Yau, S.‐T., A degeneration formula of Gromov-Witten invariants with respect to a curve class for degenerations from blow‐ups, 2004 |
[55] | Macdonald, I., Symmetric functions and Hall polynomials. 2nd edn.. Oxford Mathematical Monographs, 1998, Oxford University Press: New York ·Zbl 0899.05068 |
[56] | Manolache, C., Rational Gromov-Witten invariants of higher codimensional subvarieties, Rev. Roumaine Math. Pures Appl., 52, 2, 231-258, 2007 ·Zbl 1155.14311 |
[57] | Manolache, C., Virtual pull‐backs, J. Algebraic Geom., 21, 201-245, 2012 ·Zbl 1328.14019 |
[58] | Maulik, D.; Nekrasov, N.; Okounkov, A.; Pandharipande, R., Gromov-Witten theory and Donaldson-Thomas theory, I, Compos. Math., 142, 5, 1263-1285, 2006 ·Zbl 1108.14046 |
[59] | Maulik, D.; Nekrasov, N.; Okounkov, A.; Pandharipande, R., Gromov-Witten theory and Donaldson-Thomas theory, II, Compos. Math., 142, 5, 1286-1304, 2006 ·Zbl 1108.14047 |
[60] | Maulik, D.; Pandharipande, R., A topological view of Gromov-Witten theory, Topology, 45, 5, 887-918, 2006 ·Zbl 1112.14065 |
[61] | Maulik, D.; Pandharipande, R., New calculations in Gromov-Witten theory, Pure Appl. Math. Q., 4, 2, 469-500, 2008 ·Zbl 1156.14042 |
[62] | Maulik, D.; Pandharipande, R.; Thomas, R., Curves on \(K3\) surfaces and modular forms, J. Topol., 3, 4, 937-996, 2010 ·Zbl 1207.14058 |
[63] | Mumford, D., Towards an enumerative geometry of the moduli space of curves, Arithmetic and geometry, v, Progr.ess in Mathematics, 36, 271-328, 1983, Birkhäuser: Boston, MA ·Zbl 0554.14008 |
[64] | Oberdieck, G., Marked relative invariants and GW/PT correspondences, 2021 |
[65] | Okounkov, A.; Pandharipande, R., The equivariant Gromov-Witten theory of \(\mathbb{P}^1\), Ann. of Math. (2), 163, 2, 561-605, 2006 ·Zbl 1105.14077 |
[66] | Okounkov, A.; Pandharipande, R., Gromov-Witten theory, Hurwitz theory, and completed cycles, Ann. of Math. (2), 163, 2, 517-560, 2006 ·Zbl 1105.14076 |
[67] | Okounkov, A.; Pandharipande, R., Virasoro constraints for target curves, Invent. Math., 163, 1, 47-108, 2006 ·Zbl 1140.14047 |
[68] | Okounkov, A.; Vershik, A., A new approach to representation theory of symmetric groups. II, Zap. Nauchn. Sem. S.‐Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 307, 57-98, 2004 ·Zbl 1083.20502 |
[69] | Pandharipande, R., A calculus for the moduli space of curves, Algebraic geometry: Salt Lake City 2015, 97, 459-487, 2018, Proc. Sympos. Pure Math., Amer. Math. Soc: Providence, RI ·Zbl 1451.14090 |
[70] | Pandharipande, R.; Pixton, A., Gromov-Witten/Pairs correspondence for the quintic 3‐fold, J. Amer. Math. Soc., 30, 2, 389-449, 2017 ·Zbl 1360.14134 |
[71] | Popa, A., The genus one Gromov-Witten invariants of Calabi‐Yau complete intersections, Trans. Amer. Math. Soc., 365, 3, 1149-1181, 2013 ·Zbl 1273.14116 |
[72] | Procesi, C., Lie groups. Universitext, 2007, Springer: New York ·Zbl 1154.22001 |
[73] | Stanley, R., Enumerative combinatorics. Cambridge Studies in Advanced Mathematics, 62, 1999, Cambridge University Press: Cambridge ·Zbl 0928.05001 |
[74] | Tavakol, M., The tautological ring of the moduli space \(M^{rt}_{2,n}\), Int. Math. Res. Not. IMRN, 24, 6661-6683, 2014 ·Zbl 1442.14095 |
[75] | Tehrani, M. F.; Zinger, A., On the rim tori refinement of relative Gromov-Witten invariants, Commun. Contemp. Math., 23, 5, 2021 ·Zbl 1520.53077 ·doi:10.1142/S0219199720500510 |
[76] | Teleman, C., The structure of 2D semi‐simple field theories, Invent. Math., 188, 3, 525-588, 2012 ·Zbl 1248.53074 |
[77] | The Stacks Project Authors, Stacks project, 2018 |
[78] | Vistoli, A., Intersection theory on algebraic stacks and on their moduli spaces, Invent. Math., 97, 3, 613-670, 1989 ·Zbl 0694.14001 |
[79] | Witten, E., Two‐dimensional gravity and intersection theory on moduli space. Surveys in differential geometry (Cambridge, MA, 1990), 243-310, 1991, Lehigh University: Bethlehem, PA ·Zbl 0757.53049 |
[80] | Zhao, Y., Young tableaux and the representations of the symmetric group, Harvard College Math. Rev., 2, 33-45, 2008 |
[81] | Zinger, A., The reduced genus 1 Gromov-Witten invariants of Calabi-Yau hypersurfaces, J. Amer. Math. Soc., 22, 3, 691-737, 2009 ·Zbl 1206.14081 |
[82] | Zinger, A., The genus 0 Gromov-Witten invariants of projective complete intersections, Geom. Topol., 18, 2, 1035-1114, 2014 ·Zbl 1408.14183 |
[83] | Zinn‐Justin, P., Jucys-Murphy elements and Weingarten matrices, Lett. Math. Phys., 91, 2, 119-127, 2010 ·Zbl 1283.05269 |