Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

The maximal subgroups of the exceptional groups \(F_4(q)\), \(E_6(q)\) and \(^2\!E_6(q)\) and related almost simple groups.(English)Zbl 1523.20051

In this seminal paper, the author exhibits a complete list of all maximal subgroups of the finite simple groups of type \(F_{4}\), \(E_{6}\) and \(^{2}\!E_{6}\) over all finite fields. Prior to this paper, a complete answer was only known for \(F_{4}(2)\) [S. P. Norton andR. A. Wilson Commun. Algebra 17, No. 11, 2809–2824 (1989;Zbl 0692.20010)] and \(E_{6}(2)\) [P. B. Kleidman andR. A. Wilson Proc. Lond. Math. Soc., III. Ser. 60, No. 2, 266–294 (1990;Zbl 0715.20008)].
The main results are summarized in several tables (where the “subfield groups” are omitted) to which the reviewer refers the interested reader.
Let \(q\) be a power of the prime \(p\). The main novelty are the following.
In Table 2, two new maximal subgroups of \(E_{6}(q)\) appear:\[\mathrm{PSL}_{2}(13) \leq E_{6}(p) \quad\text{for } p \equiv 1,2,4 \mod 7, \quad p \equiv \pm 1,\pm 3, \pm 4 \mod 13\]and \(\mathrm{PSL}_{2}(19)\) in \(E_{6}(4)\).
In Table 3, two new maximal subgroups of \(^{2}\!E_{6}(q)\) appear, namely \(\Omega_{7}(3)\) is maximal in \(^{2}\! E_{6}(2)\) and \(\mathrm{PSL}_{2}(13)\) is maximal in \(^{2}\!E_{6}(p)\) for \(p \equiv 2,5,6 \mod 7\), \(p \equiv \pm 1,\pm 3, \pm 4 \mod 13\).
In the process of determining the maximal subgroups of \(F_{4}(q)\) for \(q\) even, a new maximal subgroup of the large Ree groups was found by the author. More precisely, there are exactly three conjugacy classes of maximal subgroups isomorphic to \(\mathrm{PGL}_{2}(13)\) in \(^{2}\!F_{4}(8)\), permuted transitively by the field automorphism (this subgroup was omitted in [G. Malle, J. Algebra 139, No. 1, 52–69 (1991;Zbl 0725.20014)]).
This beautiful paper is a valuable source of new information about the structure of simple groups of exceptional type (see also the author’s book [Maximal \(\mathrm{PSL}_2\) Subgroups of exceptional groups of Lie type. Providence, RI: American Mathematical Society (AMS) (2022;Zbl 1525.20014)]). As mentioned by the author, the techniques used in this paper are a mixture of algebraic groups, representation theory, computational algebra, and use of the trilinear form on the 27-dimensional minimal module for \(E_{6}\).

MSC:

20E28 Maximal subgroups
20D06 Simple groups: alternating groups and groups of Lie type
20G41 Exceptional groups
20B15 Primitive groups

Cite

References:

[1]Aschbacher, M., On the maximal subgroups of the finite classical groups, Invent. Math., 76, 469-514 (1984) ·Zbl 0537.20023
[2]Aschbacher, M., The 27-dimensional module for \(E_6, I\), Invent. Math., 89, 159-195 (1987) ·Zbl 0629.20018
[3]Aschbacher, M.: The maximal subgroups of \({E}_6\). Preprint, 170 pp. (1988)
[4]Aschbacher, M., The 27-dimensional module for \(E_6\), III, Trans. Am. Math. Soc., 321, 45-84 (1990) ·Zbl 0698.20030
[5]Aschbacher, M., The existence of \(J_3\) and its embeddings into \(E_6\), Geom. Dedic., 35, 143-154 (1990) ·Zbl 0703.20013
[6]Aschbacher, M.; Scott, L., Maximal subgroups of finite groups, J. Algebra, 92, 44-80 (1985) ·Zbl 0549.20011
[7]Borel, A.; Serre, J.-P., Sur certains sous-groups des groupes de Lie compacts, Comment. Math. Helv., 27, 128-139 (1953) ·Zbl 0051.01902
[8]Borovik, A., Structure of finite subgroups of simple algebraic groups, Algebra Log., 28, 249-279 (1989) ·Zbl 0719.20025
[9]Bosma, W.; Cannon, J.; Playoust, C., The Magma algebra system. I. The user language, J. Symb. Comput., 24, 235-265 (1997) ·Zbl 0898.68039
[10]Bourbaki, N., Lie groups and Lie Algebras. Chapters 4-6 (2002), Berlin: Springer, Berlin ·Zbl 0983.17001
[11]Bray, J.; Holt, D.; Roney-Dougal, C., The Maximal Subgroups of Low-Dimensional Finite Classical Groups (2013), Cambridge: Cambridge University Press, Cambridge ·Zbl 1303.20053
[12]Broué, M.; Malle, G.; Michel, J., Generic blocks of finite reductive groups, Astérisque, 212, 7-92 (1993) ·Zbl 0843.20012
[13]Cohen, A., Exceptional presentations of three generalized hexagons of order 2, J. Comb. Theory, Ser. A, 35, 79-88 (1983) ·Zbl 0515.51005
[14]Cohen, A.; Cooperstein, B., The 2-spaces of the standard \({E}_6(q)\)-module, Geom. Dedic., 25, 467-480 (1988) ·Zbl 0643.20025
[15]Cohen, A.; Wales, D., Embeddings of the group \(L(2,13)\) in groups of Lie type \(E_6\), Isr. J. Math., 82, 45-86 (1993) ·Zbl 0793.20044
[16]Cohen, A.; Wales, D., \( \text{SL}(3,3)\) is not a maximal subgroup of the Lie group of type \(F_4 \), Linear Algebra Appl., 226-228, 287-296 (1995) ·Zbl 0834.20049
[17]Cohen, A.; Wales, D., Finite subgroups of \(F_4(\mathbb{C})\) and \(E_6(\mathbb{C})\), Proc. Lond. Math. Soc. (3), 74, 105-150 (1997) ·Zbl 0874.20032
[18]Cohen, A.; Liebeck, M.; Saxl, J.; Seitz, G., The local maximal subgroups of exceptional groups of Lie type, finite and algebraic, Proc. Lond. Math. Soc. (3), 64, 21-48 (1992) ·Zbl 0706.20037
[19]Conway, J.; Curtis, R.; Norton, S.; Parker, R.; Wilson, R., Atlas of Finite Groups (1985), Eynsham: Oxford University Press, Eynsham ·Zbl 0568.20001
[20]Cooperstein, B., Maximal subgroups of \(G_2(2^n)\), J. Algebra, 70, 23-36 (1981) ·Zbl 0459.20007
[21]Craven, D. A., Alternating subgroups of exceptional groups of Lie type, Proc. Lond. Math. Soc., 115, 449-501 (2017) ·Zbl 1428.20018
[22]Craven, D.A.: On the maximal subgroups of the exceptional groups \(E_7(q)\) and related almost simple groups. Preprint (2021)
[23]Craven, D. A., An Ennola duality for subgroups of groups of Lie type, Monatshefte Math., 199, 785-799 (2022) ·Zbl 1514.20047
[24]Craven, D. A., Maximal \({\text{PSL}_2}\) subgroups of exceptional groups of Lie type, Mem. Am. Math. Soc., 276, 1355 (2022) ·Zbl 1525.20014
[25]Craven, D.A.: On medium-rank Lie primitive and maximal subgroups of exceptional groups of Lie type. Mem. Am. Math. Soc. (to appear) ·Zbl 1522.20001
[26]Frey, D., Embeddings of \({A}lt_n\) and its perfect covers for \(n\geq 6\) in exceptional complex Lie groups, J. Algebra, 451, 1-45 (2016) ·Zbl 1345.20064
[27]Griess, R., Elementary Abelian \(p\)-subgroups of algebraic groups, Geom. Dedic., 39, 253-305 (1991) ·Zbl 0733.20023
[28]Griess, R.; Ryba, A., Embeddings of \(PGL_2(31)\) and \(SL_2(32)\) in \(E_8( \mathbb{C})\), Duke Math. J., 94, 181-211 (1998) ·Zbl 0980.20035
[29]Jansen, C.; Lux, K.; Parker, R.; Wilson, R., An Atlas of Brauer Characters (1995), New York: Oxford University Press, New York ·Zbl 0831.20001
[30]Kleidman, P., The maximal subgroups of the Chevalley groups \(G_2(q)\) with \(q\) odd, the Ree groups \(^2G_2(q)\), and their automorphism groups, J. Algebra, 117, 30-71 (1988) ·Zbl 0651.20020
[31]Kleidman, P., The maximal subgroups of the Steinberg triality groups \(^3D_4(q)\) and of their automorphism groups, J. Algebra, 115, 182-199 (1988) ·Zbl 0642.20013
[32]Kleidman, P.; Liebeck, M., The Subgroup Structure of the Finite Classical Groups (1990), Cambridge: Cambridge University Press, Cambridge ·Zbl 0697.20004
[33]Kleidman, P.; Wilson, R., The maximal subgroups of \({Fi}_{22}\), Math. Proc. Camb. Philos. Soc., 102, 17-23 (1987) ·Zbl 0622.20008
[34]Kleidman, P.; Wilson, R., \(J_3< E_6(4)\) and \(M_{12}< E_6(5)\), J. Lond. Math. Soc., 42, 555-561 (1990) ·Zbl 0677.20014
[35]Kleidman, P.; Wilson, R., The maximal subgroups of \(E_6(2)\) and \(\text{Aut}(E_6(2))\), Proc. Lond. Math. Soc. (3), 60, 266-294 (1990) ·Zbl 0715.20008
[36]Lawther, R., Jordan block sizes of unipotent elements in exceptional algebraic groups, Commun. Algebra, 23, 4125-4156 (1995) ·Zbl 0880.20034
[37]Liebeck, M.; Saxl, J., On the orders of maximal subgroups of the finite exceptional groups of Lie type, Proc. Lond. Math. Soc. (3), 55, 299-330 (1987) ·Zbl 0627.20026
[38]Liebeck, M.; Seitz, G., Maximal subgroups of exceptional groups of Lie type, finite and algebraic, Geom. Dedic., 35, 353-387 (1990) ·Zbl 0721.20030
[39]Liebeck, M.; Seitz, G., On the subgroup structure of exceptional groups of Lie type, Trans. Am. Math. Soc., 350, 3409-3482 (1998) ·Zbl 0905.20031
[40]Liebeck, M.; Seitz, G., On finite subgroups of exceptional algebraic groups, J. Reine Angew. Math., 515, 25-72 (1999) ·Zbl 0980.20034
[41]Liebeck, M.; Seitz, G., The maximal subgroups of positive dimension in exceptional algebraic groups, Mem. Am. Math. Soc., 169, 802 (2004) ·Zbl 1058.20040
[42]Liebeck, M.; Seitz, G., Subgroups of exceptional algebraic groups which are irreducible on an adjoint or minimal module, J. Group Theory, 7, 347-372 (2004) ·Zbl 1058.20037
[43]Liebeck, M.; Saxl, J.; Seitz, G., Subgroups of maximal rank in finite exceptional groups of Lie type, Proc. Lond. Math. Soc. (3), 65, 297-325 (1992) ·Zbl 0776.20012
[44]Liebeck, M.; Saxl, J.; Testerman, D., Simple subgroups of large rank in groups of Lie type, Proc. Lond. Math. Soc. (3), 72, 425-457 (1996) ·Zbl 0855.20040
[45]Liebeck, M.; Martin, B.; Shalev, A., On conjugacy classes of maximal subgroups of finite simple groups, and a related zeta function, Duke Math. J., 128, 541-557 (2005) ·Zbl 1103.20010
[46]Litterick, A., On non-generic finite subgroups of exceptional algebraic groups, Mem. Am. Math. Soc., 253, 1207 (2018) ·Zbl 1435.20001
[47]Lübeck, F., Small degree representations of finite Chevalley groups in defining characteristic, LMS J. Comput. Math., 4, 135-169 (2001) ·Zbl 1053.20008
[48]Magaard, K.: The maximal subgroups of the Chevalley groups \({F}_4(F)\) where \({F}\) is a finite or algebraically closed field of characteristic \(\neq 2, 3\). Ph.D. thesis, California Institute of Technology (1990)
[49]Malle, G., The maximal subgroups of \(^2\!F_4(q^2)\), J. Algebra, 139, 52-69 (1991) ·Zbl 0725.20014
[50]Malle, G.; Testerman, D., Linear Algebraic Groups and Finite Groups of Lie Type (2011), Cambridge: Cambridge University Press, Cambridge ·Zbl 1256.20045
[51]Norton, S., On the group \(\text{Fi}_{24} \), Geom. Dedic., 25, 483-501 (1988) ·Zbl 0636.20013
[52]Norton, S.; Wilson, R., The maximal subgroups of \(F_4(2)\) and its automorphism group, Commun. Algebra, 17, 2809-2824 (1989) ·Zbl 0692.20010
[53]Pachera, A.: Embeddings of \(\text{PSL}_2(q)\) in exceptional groups of Lie type over a field of characteristic \(\neq 2, 3\). Ph.D. thesis, University of Birmingham (2021)
[54]Premet, A.; Stewart, D., Classification of the maximal subalgebras of exceptional Lie algebras over fields of good characteristic, J. Am. Math. Soc., 32, 965-1008 (2019) ·Zbl 1478.17017
[55]Ryba, A., Short proofs of embeddings into exceptional groups of Lie type, J. Algebra, 249, 402-418 (2002) ·Zbl 1011.20017
[56]Ryba, A., Construction of some irreducible subgroups of \({E}_8\) and \({E}_6\), LMS J. Comput. Math., 10, 329-340 (2007) ·Zbl 1223.20042
[57]Seitz, G., Maximal subgroups of exceptional algebraic groups, Mem. Am. Math. Soc., 90, 441 (1991) ·Zbl 0743.20029
[58]Serre, J.-P., Exemples de plongements des groupes \({\text{PSL}}_2({ \text{F}}_p)\) dans des groupes de Lie simples, Invent. Math., 124, 525-562 (1996) ·Zbl 0877.20033
[59]Springer, T.; Steinberg, R., Conjugacy classes, Seminar on Algebraic Groups and Related Finite Groups, 167-266 (1970), Berlin: Springer, Berlin ·Zbl 0249.20024
[60]Stewart, D., The reductive subgroups of \(F_4\), Mem. Am. Math. Soc., 223, 1049 (2013) ·Zbl 1295.20049
[61]Testerman, D., A construction of certain maximal subgroups of the algebraic groups \(E_6\) and \(F_4\), J. Algebra, 122, 299-322 (1989) ·Zbl 0673.20017
[62]Thomas, A., Irreducible \({A}_1\) subgroups of exceptional algebraic groups, J. Algebra, 447, 240-296 (2016) ·Zbl 1366.20032
[63]Wilson, R., The geometry and maximal subgroups of the simple groups of A. Rudvalis and J. Tits, Proc. Lond. Math. Soc. (3), 48, 533-563 (1984) ·Zbl 0507.20013
[64]Wilson, R., Maximal subgroups of automorphism groups of simple groups, J. Lond. Math. Soc. (2), 32, 460-466 (1985) ·Zbl 0562.20006
[65]Wilson, R.: Maximal subgroups of \({^2\!E_6(2)}\) and its automorphism groups. Preprint (2018)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp