[1] | Aschbacher, M., On the maximal subgroups of the finite classical groups, Invent. Math., 76, 469-514 (1984) ·Zbl 0537.20023 |
[2] | Aschbacher, M., The 27-dimensional module for \(E_6, I\), Invent. Math., 89, 159-195 (1987) ·Zbl 0629.20018 |
[3] | Aschbacher, M.: The maximal subgroups of \({E}_6\). Preprint, 170 pp. (1988) |
[4] | Aschbacher, M., The 27-dimensional module for \(E_6\), III, Trans. Am. Math. Soc., 321, 45-84 (1990) ·Zbl 0698.20030 |
[5] | Aschbacher, M., The existence of \(J_3\) and its embeddings into \(E_6\), Geom. Dedic., 35, 143-154 (1990) ·Zbl 0703.20013 |
[6] | Aschbacher, M.; Scott, L., Maximal subgroups of finite groups, J. Algebra, 92, 44-80 (1985) ·Zbl 0549.20011 |
[7] | Borel, A.; Serre, J.-P., Sur certains sous-groups des groupes de Lie compacts, Comment. Math. Helv., 27, 128-139 (1953) ·Zbl 0051.01902 |
[8] | Borovik, A., Structure of finite subgroups of simple algebraic groups, Algebra Log., 28, 249-279 (1989) ·Zbl 0719.20025 |
[9] | Bosma, W.; Cannon, J.; Playoust, C., The Magma algebra system. I. The user language, J. Symb. Comput., 24, 235-265 (1997) ·Zbl 0898.68039 |
[10] | Bourbaki, N., Lie groups and Lie Algebras. Chapters 4-6 (2002), Berlin: Springer, Berlin ·Zbl 0983.17001 |
[11] | Bray, J.; Holt, D.; Roney-Dougal, C., The Maximal Subgroups of Low-Dimensional Finite Classical Groups (2013), Cambridge: Cambridge University Press, Cambridge ·Zbl 1303.20053 |
[12] | Broué, M.; Malle, G.; Michel, J., Generic blocks of finite reductive groups, Astérisque, 212, 7-92 (1993) ·Zbl 0843.20012 |
[13] | Cohen, A., Exceptional presentations of three generalized hexagons of order 2, J. Comb. Theory, Ser. A, 35, 79-88 (1983) ·Zbl 0515.51005 |
[14] | Cohen, A.; Cooperstein, B., The 2-spaces of the standard \({E}_6(q)\)-module, Geom. Dedic., 25, 467-480 (1988) ·Zbl 0643.20025 |
[15] | Cohen, A.; Wales, D., Embeddings of the group \(L(2,13)\) in groups of Lie type \(E_6\), Isr. J. Math., 82, 45-86 (1993) ·Zbl 0793.20044 |
[16] | Cohen, A.; Wales, D., \( \text{SL}(3,3)\) is not a maximal subgroup of the Lie group of type \(F_4 \), Linear Algebra Appl., 226-228, 287-296 (1995) ·Zbl 0834.20049 |
[17] | Cohen, A.; Wales, D., Finite subgroups of \(F_4(\mathbb{C})\) and \(E_6(\mathbb{C})\), Proc. Lond. Math. Soc. (3), 74, 105-150 (1997) ·Zbl 0874.20032 |
[18] | Cohen, A.; Liebeck, M.; Saxl, J.; Seitz, G., The local maximal subgroups of exceptional groups of Lie type, finite and algebraic, Proc. Lond. Math. Soc. (3), 64, 21-48 (1992) ·Zbl 0706.20037 |
[19] | Conway, J.; Curtis, R.; Norton, S.; Parker, R.; Wilson, R., Atlas of Finite Groups (1985), Eynsham: Oxford University Press, Eynsham ·Zbl 0568.20001 |
[20] | Cooperstein, B., Maximal subgroups of \(G_2(2^n)\), J. Algebra, 70, 23-36 (1981) ·Zbl 0459.20007 |
[21] | Craven, D. A., Alternating subgroups of exceptional groups of Lie type, Proc. Lond. Math. Soc., 115, 449-501 (2017) ·Zbl 1428.20018 |
[22] | Craven, D.A.: On the maximal subgroups of the exceptional groups \(E_7(q)\) and related almost simple groups. Preprint (2021) |
[23] | Craven, D. A., An Ennola duality for subgroups of groups of Lie type, Monatshefte Math., 199, 785-799 (2022) ·Zbl 1514.20047 |
[24] | Craven, D. A., Maximal \({\text{PSL}_2}\) subgroups of exceptional groups of Lie type, Mem. Am. Math. Soc., 276, 1355 (2022) ·Zbl 1525.20014 |
[25] | Craven, D.A.: On medium-rank Lie primitive and maximal subgroups of exceptional groups of Lie type. Mem. Am. Math. Soc. (to appear) ·Zbl 1522.20001 |
[26] | Frey, D., Embeddings of \({A}lt_n\) and its perfect covers for \(n\geq 6\) in exceptional complex Lie groups, J. Algebra, 451, 1-45 (2016) ·Zbl 1345.20064 |
[27] | Griess, R., Elementary Abelian \(p\)-subgroups of algebraic groups, Geom. Dedic., 39, 253-305 (1991) ·Zbl 0733.20023 |
[28] | Griess, R.; Ryba, A., Embeddings of \(PGL_2(31)\) and \(SL_2(32)\) in \(E_8( \mathbb{C})\), Duke Math. J., 94, 181-211 (1998) ·Zbl 0980.20035 |
[29] | Jansen, C.; Lux, K.; Parker, R.; Wilson, R., An Atlas of Brauer Characters (1995), New York: Oxford University Press, New York ·Zbl 0831.20001 |
[30] | Kleidman, P., The maximal subgroups of the Chevalley groups \(G_2(q)\) with \(q\) odd, the Ree groups \(^2G_2(q)\), and their automorphism groups, J. Algebra, 117, 30-71 (1988) ·Zbl 0651.20020 |
[31] | Kleidman, P., The maximal subgroups of the Steinberg triality groups \(^3D_4(q)\) and of their automorphism groups, J. Algebra, 115, 182-199 (1988) ·Zbl 0642.20013 |
[32] | Kleidman, P.; Liebeck, M., The Subgroup Structure of the Finite Classical Groups (1990), Cambridge: Cambridge University Press, Cambridge ·Zbl 0697.20004 |
[33] | Kleidman, P.; Wilson, R., The maximal subgroups of \({Fi}_{22}\), Math. Proc. Camb. Philos. Soc., 102, 17-23 (1987) ·Zbl 0622.20008 |
[34] | Kleidman, P.; Wilson, R., \(J_3< E_6(4)\) and \(M_{12}< E_6(5)\), J. Lond. Math. Soc., 42, 555-561 (1990) ·Zbl 0677.20014 |
[35] | Kleidman, P.; Wilson, R., The maximal subgroups of \(E_6(2)\) and \(\text{Aut}(E_6(2))\), Proc. Lond. Math. Soc. (3), 60, 266-294 (1990) ·Zbl 0715.20008 |
[36] | Lawther, R., Jordan block sizes of unipotent elements in exceptional algebraic groups, Commun. Algebra, 23, 4125-4156 (1995) ·Zbl 0880.20034 |
[37] | Liebeck, M.; Saxl, J., On the orders of maximal subgroups of the finite exceptional groups of Lie type, Proc. Lond. Math. Soc. (3), 55, 299-330 (1987) ·Zbl 0627.20026 |
[38] | Liebeck, M.; Seitz, G., Maximal subgroups of exceptional groups of Lie type, finite and algebraic, Geom. Dedic., 35, 353-387 (1990) ·Zbl 0721.20030 |
[39] | Liebeck, M.; Seitz, G., On the subgroup structure of exceptional groups of Lie type, Trans. Am. Math. Soc., 350, 3409-3482 (1998) ·Zbl 0905.20031 |
[40] | Liebeck, M.; Seitz, G., On finite subgroups of exceptional algebraic groups, J. Reine Angew. Math., 515, 25-72 (1999) ·Zbl 0980.20034 |
[41] | Liebeck, M.; Seitz, G., The maximal subgroups of positive dimension in exceptional algebraic groups, Mem. Am. Math. Soc., 169, 802 (2004) ·Zbl 1058.20040 |
[42] | Liebeck, M.; Seitz, G., Subgroups of exceptional algebraic groups which are irreducible on an adjoint or minimal module, J. Group Theory, 7, 347-372 (2004) ·Zbl 1058.20037 |
[43] | Liebeck, M.; Saxl, J.; Seitz, G., Subgroups of maximal rank in finite exceptional groups of Lie type, Proc. Lond. Math. Soc. (3), 65, 297-325 (1992) ·Zbl 0776.20012 |
[44] | Liebeck, M.; Saxl, J.; Testerman, D., Simple subgroups of large rank in groups of Lie type, Proc. Lond. Math. Soc. (3), 72, 425-457 (1996) ·Zbl 0855.20040 |
[45] | Liebeck, M.; Martin, B.; Shalev, A., On conjugacy classes of maximal subgroups of finite simple groups, and a related zeta function, Duke Math. J., 128, 541-557 (2005) ·Zbl 1103.20010 |
[46] | Litterick, A., On non-generic finite subgroups of exceptional algebraic groups, Mem. Am. Math. Soc., 253, 1207 (2018) ·Zbl 1435.20001 |
[47] | Lübeck, F., Small degree representations of finite Chevalley groups in defining characteristic, LMS J. Comput. Math., 4, 135-169 (2001) ·Zbl 1053.20008 |
[48] | Magaard, K.: The maximal subgroups of the Chevalley groups \({F}_4(F)\) where \({F}\) is a finite or algebraically closed field of characteristic \(\neq 2, 3\). Ph.D. thesis, California Institute of Technology (1990) |
[49] | Malle, G., The maximal subgroups of \(^2\!F_4(q^2)\), J. Algebra, 139, 52-69 (1991) ·Zbl 0725.20014 |
[50] | Malle, G.; Testerman, D., Linear Algebraic Groups and Finite Groups of Lie Type (2011), Cambridge: Cambridge University Press, Cambridge ·Zbl 1256.20045 |
[51] | Norton, S., On the group \(\text{Fi}_{24} \), Geom. Dedic., 25, 483-501 (1988) ·Zbl 0636.20013 |
[52] | Norton, S.; Wilson, R., The maximal subgroups of \(F_4(2)\) and its automorphism group, Commun. Algebra, 17, 2809-2824 (1989) ·Zbl 0692.20010 |
[53] | Pachera, A.: Embeddings of \(\text{PSL}_2(q)\) in exceptional groups of Lie type over a field of characteristic \(\neq 2, 3\). Ph.D. thesis, University of Birmingham (2021) |
[54] | Premet, A.; Stewart, D., Classification of the maximal subalgebras of exceptional Lie algebras over fields of good characteristic, J. Am. Math. Soc., 32, 965-1008 (2019) ·Zbl 1478.17017 |
[55] | Ryba, A., Short proofs of embeddings into exceptional groups of Lie type, J. Algebra, 249, 402-418 (2002) ·Zbl 1011.20017 |
[56] | Ryba, A., Construction of some irreducible subgroups of \({E}_8\) and \({E}_6\), LMS J. Comput. Math., 10, 329-340 (2007) ·Zbl 1223.20042 |
[57] | Seitz, G., Maximal subgroups of exceptional algebraic groups, Mem. Am. Math. Soc., 90, 441 (1991) ·Zbl 0743.20029 |
[58] | Serre, J.-P., Exemples de plongements des groupes \({\text{PSL}}_2({ \text{F}}_p)\) dans des groupes de Lie simples, Invent. Math., 124, 525-562 (1996) ·Zbl 0877.20033 |
[59] | Springer, T.; Steinberg, R., Conjugacy classes, Seminar on Algebraic Groups and Related Finite Groups, 167-266 (1970), Berlin: Springer, Berlin ·Zbl 0249.20024 |
[60] | Stewart, D., The reductive subgroups of \(F_4\), Mem. Am. Math. Soc., 223, 1049 (2013) ·Zbl 1295.20049 |
[61] | Testerman, D., A construction of certain maximal subgroups of the algebraic groups \(E_6\) and \(F_4\), J. Algebra, 122, 299-322 (1989) ·Zbl 0673.20017 |
[62] | Thomas, A., Irreducible \({A}_1\) subgroups of exceptional algebraic groups, J. Algebra, 447, 240-296 (2016) ·Zbl 1366.20032 |
[63] | Wilson, R., The geometry and maximal subgroups of the simple groups of A. Rudvalis and J. Tits, Proc. Lond. Math. Soc. (3), 48, 533-563 (1984) ·Zbl 0507.20013 |
[64] | Wilson, R., Maximal subgroups of automorphism groups of simple groups, J. Lond. Math. Soc. (2), 32, 460-466 (1985) ·Zbl 0562.20006 |
[65] | Wilson, R.: Maximal subgroups of \({^2\!E_6(2)}\) and its automorphism groups. Preprint (2018) |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.