Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Hitchin fibrations, abelian surfaces, and the \(P=W\) conjecture.(English)Zbl 1523.14061

Summary: We study the topology of Hitchin fibrations via abelian surfaces. We establish the \(P=W\) conjecture for genus 2 curves and arbitrary rank. In higher genus and arbitrary rank, we prove that \(P=W\) holds for the subalgebra of cohomology generated by even tautological classes. Furthermore, we show that all tautological generators lie in the correct pieces of the perverse filtration as predicted by the \(P=W\) conjecture. In combination with recent work of Mellit, this reduces the full conjecture to the multiplicativity of the perverse filtration. Our main technique is to study the Hitchin fibration as a degeneration of the Hilbert-Chow morphism associated with the moduli space of certain torsion sheaves on an abelian surface, where the symmetries induced by Markman’s monodromy operators play a crucial role.

MSC:

14H60 Vector bundles on curves and their moduli
14F45 Topological properties in algebraic geometry
14D20 Algebraic moduli problems, moduli of vector bundles

Cite

References:

[1]Atiyah, M. F., \(K\)-theory, v+166+xlix pp. (1967), W. A. Benjamin, Inc., New York-Amsterdam ·Zbl 0159.53302
[2]A’Campo, Norbert, Tresses, monodromie et le groupe symplectique, Comment. Math. Helv., 318-327 (1979) ·Zbl 0441.32004 ·doi:10.1007/BF02566275
[3]Baum, Paul, Riemann-Roch for singular varieties, Inst. Hautes \'{E}tudes Sci. Publ. Math., 101-145 (1975) ·Zbl 0332.14003
[4]Beauville, Arnaud, Spectral curves and the generalised theta divisor, J. Reine Angew. Math., 169-179 (1989) ·Zbl 0666.14015 ·doi:10.1515/crll.1989.398.169
[5]Be\u{\i }linson, A. A., Analysis and topology on singular spaces, I. Faisceaux pervers, Ast\'{e}risque, 5-171 (1981), Soc. Math. France, Paris
[6]Borel, Armand, Density properties for certain subgroups of semi-simple groups without compact components, Ann. of Math. (2), 179-188 (1960) ·Zbl 0094.24901 ·doi:10.2307/1970150
[7]Chuang, W.-Y., Moduli spaces. BPS states and the \(P=W\) conjecture, London Math. Soc. Lecture Note Ser., 132-150 (2014), Cambridge Univ. Press, Cambridge ·Zbl 1320.14057
[8]de Cataldo, Mark Andrea, Geometry of moduli spaces and representation theory. Perverse sheaves and the topology of algebraic varieties, IAS/Park City Math. Ser., 1-58 (2017), Amer. Math. Soc., Providence, RI ·Zbl 1439.14060
[9]de Cataldo, Mark Andrea A., Hodge-theoretic splitting mechanisms for projective maps, J. Singul., 134-156 (2013) ·Zbl 1317.14045 ·doi:10.5427/jsing.2013.7h
[10]M. A. de Cataldo, Perverse Leray filtration and specialization with applications to the Hitchin morphism, to appear in Math. Proc. Cambridge Phil. Soc., arXiv:2102.02264, 2021.
[11]de Cataldo, Mark Andrea A., Topology of Hitchin systems and Hodge theory of character varieties: the case \(A_1\), Ann. of Math. (2), 1329-1407 (2012) ·Zbl 1375.14047 ·doi:10.4007/annals.2012.175.3.7
[12]de Cataldo, Mark Andrea A., Exchange between perverse and weight filtration for the Hilbert schemes of points of two surfaces, J. Singul., 23-38 (2013) ·Zbl 1304.14011 ·doi:10.5427/jsing.2013.7c
[13]de Cataldo, Mark Andrea A., The perverse filtration for the Hitchin fibration is locally constant, Pure Appl. Math. Q., 1441-1464 (2020) ·Zbl 1462.53062 ·doi:10.4310/PAMQ.2020.v16.n5.a4
[14]de Cataldo, Mark Andrea A., The Chow groups and the motive of the Hilbert scheme of points on a surface, J. Algebra, 824-848 (2002) ·Zbl 1033.14004 ·doi:10.1006/jabr.2001.9105
[15]de Cataldo, Mark Andrea A., The Hodge theory of algebraic maps, Ann. Sci. \'{E}cole Norm. Sup. (4), 693-750 (2005) ·Zbl 1094.14005 ·doi:10.1016/j.ansens.2005.07.001
[16]de Cataldo, Mark Andrea A., The decomposition theorem, perverse sheaves and the topology of algebraic maps, Bull. Amer. Math. Soc. (N.S.), 535-633 (2009) ·Zbl 1181.14001 ·doi:10.1090/S0273-0979-09-01260-9
[17]de Cataldo, Mark Andrea A., Algebraic geometry-Seattle 2005. Part 2. Hodge-theoretic aspects of the decomposition theorem, Proc. Sympos. Pure Math., 489-504 (2009), Amer. Math. Soc., Providence, RI ·Zbl 1207.14016 ·doi:10.1090/pspum/080.2/2483945
[18]Deligne, Pierre, Motives. D\'{e}compositions dans la cat\'{e}gorie d\'{e}riv\'{e}e, Proc. Sympos. Pure Math., 115-128 (1991), Amer. Math. Soc., Providence, RI ·Zbl 0809.18008 ·doi:10.1090/pspum/055.1/1265526
[19]Donagi, Ron, Birational algebraic geometry. Nilpotent cones and sheaves on \(K3\) surfaces, Contemp. Math., 51-61 (1996), Amer. Math. Soc., Providence, RI ·Zbl 0907.32004 ·doi:10.1090/conm/207/02719
[20]Fulton, William, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], xi+470 pp. (1984), Springer-Verlag, Berlin ·Zbl 0885.14002 ·doi:10.1007/978-3-662-02421-8
[21]G\"{o}ttsche, Lothar, The Betti numbers of the Hilbert scheme of points on a smooth projective surface, Math. Ann., 193-207 (1990) ·Zbl 0679.14007 ·doi:10.1007/BF01453572
[22]G\"{o}ttsche, Lothar, Perverse sheaves and the cohomology of Hilbert schemes of smooth algebraic surfaces, Math. Ann., 235-245 (1993) ·Zbl 0789.14002 ·doi:10.1007/BF01445104
[23]Harder, Andrew, \(P = W\) for Lagrangian fibrations and degenerations of hyper-K\"{a}hler manifolds, Forum Math. Sigma, Paper No. e50, 6 pp. (2021) ·Zbl 1467.14101 ·doi:10.1017/fms.2021.31
[24]Hausel, Tam\'{a}s, Mixed Hodge polynomials of character varieties, Invent. Math., 555-624 (2008) ·Zbl 1213.14020 ·doi:10.1007/s00222-008-0142-x
[25]Hausel, Tam\'{a}s, Generators for the cohomology ring of the moduli space of rank 2 Higgs bundles, Proc. London Math. Soc. (3), 632-658 (2004) ·Zbl 1060.14048 ·doi:10.1112/S0024611503014618
[26]Huybrechts, Daniel, The geometry of moduli spaces of sheaves, Aspects of Mathematics, E31, xiv+269 pp. (1997), Friedr. Vieweg & Sohn, Braunschweig ·Zbl 0872.14002 ·doi:10.1007/978-3-663-11624-0
[27]Hitchin, Nigel, Stable bundles and integrable systems, Duke Math. J., 91-114 (1987) ·Zbl 0627.14024 ·doi:10.1215/S0012-7094-87-05408-1
[28]Le Potier, J., Faisceaux semi-stables de dimension \(1\) sur le plan projectif, Rev. Roumaine Math. Pures Appl., 635-678 (1993) ·Zbl 0815.14029
[29]Le Potier, Joseph, Syst\`emes coh\'{e}rents et structures de niveau, Ast\'{e}risque, 143 pp. (1993) ·Zbl 0881.14008
[30]Markman, Eyal, Generators of the cohomology ring of moduli spaces of sheaves on symplectic surfaces, J. Reine Angew. Math., 61-82 (2002) ·Zbl 0988.14019 ·doi:10.1515/crll.2002.028
[31]Markman, Eyal, Integral generators for the cohomology ring of moduli spaces of sheaves over Poisson surfaces, Adv. Math., 622-646 (2007) ·Zbl 1115.14036 ·doi:10.1016/j.aim.2006.03.006
[32]Markman, Eyal, On the monodromy of moduli spaces of sheaves on \(K3\) surfaces, J. Algebraic Geom., 29-99 (2008) ·Zbl 1185.14015 ·doi:10.1090/S1056-3911-07-00457-2
[33]Markman, Eyal, Algebraic and complex geometry. Lagrangian fibrations of holomorphic-symplectic varieties of \(K3^{[n]}\)-type, Springer Proc. Math. Stat., 241-283 (2014), Springer, Cham ·Zbl 1319.53102 ·doi:10.1007/978-3-319-05404-9\_10
[34]E. Markman, The monodromy of generalized Kummer varieties and algebraic cycles on their intermediate Jacobians, 1805.11574, 2018.
[35]Maulik, Davesh, Gopakumar-Vafa invariants via vanishing cycles, Invent. Math., 1017-1097 (2018) ·Zbl 1400.14141 ·doi:10.1007/s00222-018-0800-6
[36]A. Mellit, Cell decompositions of character varieties, 1905.10685, 2019.
[37]Mumford, David, Geometric invariant theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Band 34, vi+145 pp. (1965), Springer-Verlag, Berlin-New York ·Zbl 0147.39304
[38]J. Shen and Q. Yin, Topology of Lagrangian fibrations and Hodge theory and Hodge theory of hyper-K\"ahler manifolds, Appendix by Claire Voisin, Duke Math. J., to appear.
[39]J. Shen and Z. Zhang, Perverse filtrations, Hilbert schemes, and the P=W conjecture for parabolic Higgs bundles, Algebr. Geom., 8 (4), 2021, pp. 465-489. ·Zbl 1483.14033
[40]Shende, Vivek, The weights of the tautological classes of character varieties, Int. Math. Res. Not. IMRN, 6832-6840 (2017) ·Zbl 1405.14037 ·doi:10.1093/imrn/rnv363
[41]Simpson, Carlos T., Higgs bundles and local systems, Inst. Hautes \'{E}tudes Sci. Publ. Math., 5-95 (1992) ·Zbl 0814.32003
[42]Simpson, Carlos T., Moduli of representations of the fundamental group of a smooth projective variety. II, Inst. Hautes \'{E}tudes Sci. Publ. Math., 5-79 (1995) (1994) ·Zbl 0891.14006
[43]Williamson, Geordie, The Hodge theory of the decomposition theorem, Ast\'{e}risque, Exp. No. 1115, 335-367 (2017) ·Zbl 1373.14010
[44]Yoshioka, K\={o}ta, Moduli spaces of stable sheaves on abelian surfaces, Math. Ann., 817-884 (2001) ·Zbl 1066.14013 ·doi:10.1007/s002080100255
[45]Zhang, Zili, Multiplicativity of perverse filtration for Hilbert schemes of fibered surfaces, Adv. Math., 636-679 (2017) ·Zbl 1401.14190 ·doi:10.1016/j.aim.2017.03.028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp