Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

On the two types of affine structures for degenerating Kummer surfaces – non-Archimedean vs Gromov-Hausdorff limits –.(English)Zbl 1523.14015

The paper compares two integral affine manifolds attached to degenerations of Kummer surfaces, which are special types of \(K3\) surfaces. Such surfaces are constructed from an abelian surface by taking the quotient by \(\mathbb{Z}/2\mathbb{Z}\) acting by multiplication by \(-1\) and resolving the \(16\) singularities, coming from the \(2\)-torsion points.
Motivated by the Strominger-Yau-Zaslow conjucture in mirror symmetry, to any degeneration of a Calabi-Yau, in particular, to a degeneration of a Kummer surface, one can attach two integreal affine manifolds with singularities. The first one, constructed by Kontsevich-Soibelman, using non-Archimedean techniques, can also be described as a dual intersection complex of a dlt model of the degeneration [J. Nicaise andC. Xu, Am. J. Math. 138, No. 6, 1645–1667 (2016;Zbl 1375.14092)]. The second integral affine manifold is defined as the Gromov-Hausdorff limit of the Ricci flat metric on the Camabi-Yau, which exists by Yau’s proof of the Calabi conjecture.
Relating these two constructions, one coming from algebraic geometry and the other from Riemannian geometry is a challenging task. In general, it is an open conjecture of Kontsevich-Soibelman that these two integral affine manifolds are the same. The author proves this conjecture for degenerations of Kummer surfaces.
The proof uses the construction of Kummer surfaces as quetients of abelian surfaces. In particular, it uses the work of Künnemann on degenerations of abelian varieties, to construct nice degenerations of Kummer surfaces, with good enough properties so that one can understand the structure of the dual intersection complex [K. Künnemann, Duke Math. J. 95, No. 1, 161–212 (1998;Zbl 0955.14017)].

MSC:

14D06 Fibrations, degenerations in algebraic geometry
14G22 Rigid analytic geometry
14T20 Geometric aspects of tropical varieties

Cite

References:

[1]Burago, Dmitri; Burago, Yuri; Ivanov, Sergei. A course in metric geometry. Graduate Studies in Mathematics, 33.American Mathematical Society, Providence, RI, 2001. xiv+415 pp. ISBN: 0-8218-2129-6.MR1835418,Zbl 0981.51016, doi:10.1090/gsm/033. 734 ·Zbl 1232.53037
[2]Berkovich,Vladimir G. Spectral theory and analytic geometry over nonArchimedean fields. Mathematical Surveys and Monographs, 33.American Mathematical Society, Providence, RI, 1990. x+169 pp. ISBN: 0-8218-1534-2.MR1070709,Zbl 0715.14013, doi:10.1090/surv/033.712,713 ·Zbl 0715.14013
[3]Boucksom, Sébastien; Favre, Charles; Jonsson, Mattias. Singular semipositive metrics in non-Archimedean geometry.J. Algebraic Geom.25(2016), no. 1, 77-139. MR3419957,Zbl 1346.14065,arXiv:1201.0187, doi:10.1090/jag/656.722 ·Zbl 1346.14065
[4]Bosch, Siegfried; Güntzer, Ulrich; Remmert, Reinhold. Non-Archimedean analysis. A systematic approach to rigid analytic geometry. Grundlehren der mathematischen Wissenschaften, 261.Springer-Verlag, Berlin, 1984. xii+436 pp. ISBN: 3-54012546-9.MR746961,Zbl 0539.14017,712 ·Zbl 0539.14017
[5]731 de Fernex, Tommaso; Kollár, János; Xu, Chenyang. The dual complex of singularities.Higher dimensional algebraic geometry—in honour of Professor Yujiro Kawamata’s sixtieth birthday, 103-129. Adv. Stud. Pure Math., 74.Math Soc. Japan, Tokyo, 2017.MR3791210,Zbl 1388.14107,arXiv:1212.1675, doi:10.2969/aspm/07410103. ·Zbl 1388.14107
[6]Faltings, Gerd; Chai, Ching-Li. Degeneration of abelian varieties. With an appendix by David Mumford. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 22.SpringerVerlag, Berlin, 1990. xii+316 pp. ISBN: 3-540-52015-5.MR1083353,Zbl 0744.14031, doi:10.1007/978-3-662-02632-8 709,713 ·Zbl 0744.14031
[7]Goldman, William; Hirsch, Morris W. The radiance obstruction and parallel forms on affine manifolds.Trans. Amer. Math. Soc.286(1984), no. 2, 629-649.MR760977,Zbl 0561.57014, doi:10.2307/1999812 730 ·Zbl 0561.57014
[8]Goto, Keita; Odaka, Yuji. Special Lagrangian fibrations, Berkovich retraction, and crystallographic group.Int. Math. Res. Not.(2023) rnad052.arXiv:2206.14474, doi:10.1093/imrn/rnad052.731,735
[9]Goto, Keita. On the Berkovich double residue fields and birational models. Preprint, 2020.arXiv:2007.03610.712
[10]Gromov, Mikhael. Structures métriques pour les variétés riemanniennes. Textes Mathématiques, 1.CEDIC, Paris, 1981. iv+152 pp. ISBN: 2-7124-0714-8.MR682063,Zbl 0509.53034.734 ·Zbl 0509.53034
[11]Gross, Mark. Mirror symmetry and the Strominger-Yau-Zaslow conjecture.Current developments in mathematics 2012, 133-191.Int. Press, Somerville, MA, 2013. MR3204345,Zbl 1294.14015,arXiv:1212.4220.734 ·Zbl 1294.14015
[12]Gross, Mark; Siebert, Bernd. Mirror symmetry via logarithmic degeneration data. I.J. Differential Geom.72(2006), no. 2, 169-338.MR2213573,Zbl 1107.14029, arXiv:math/0309070, doi:10.4310/jdg/1143593211 708,730 ·Zbl 1107.14029
[13]Grothendieck, Alexander; Raynaud, M.; Rim, D. S. Groupes de monodromie en géométrie algébrique. I. (French) Séminaire de Géométrie Algébrique du Bois-Marie 1967-1969 (SGA 7 I). Dirigé par A. Grothendieck. Avec la collaboration de M. Raynaud et D. S. Rim. Lecture Notes in Mathematics, 288.Springer-Verlag, Berlin-New York, 1972. viii+523 pp.MR0354656,Zbl 0237.00013, doi:10.1007/BFb0068688.724,732 ·Zbl 0237.00013
[14]Hitchin, Nigel J. The moduli space of special Lagrangian submanifolds.Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)25(1997), no. 3-4, 503-515.MR1655530,Zbl 1015.32022, arXiv:dg-ga/9711002.734 ·Zbl 1015.32022
[15]Halle, Lars Halvard; Nicaise, Johannes. Motivic zeta functions of degenerating Calabi-Yau varieties.Math. Ann.370(2018), no. 3-4, 1277-1320.MR3770167,Zbl 1400.14045, doi:10.1007/s00208-017-1578-3.717 ·Zbl 1400.14045
[16]Kempf,George R.;Knudsen,Finn Faye;Mumford,David;SaintDonat, Bernard. Toroidal embeddings. I. Lecture Notes in Mathematics, 339. Springer-Verlag, Berlin-New York, 1973. viii+209 pp.MR0335518,Zbl 0271.14017 doi:10.1007/BFb0070318.711,718 ·Zbl 0271.14017
[17]Kontsevich, Maxim; Soibelman, Yan. Affine structures and non-Archimedean analytic spaces.The unity of mathematics, 321-385. Progr. Math., 244,Birkhäuser Boston, Boston, MA, 2006.MR2181810,Zbl 1114.14027, doi:10.1007/0-8176-4467-9_9.709,710, 723,736 ·Zbl 1114.14027
[18]Künnemann, Klaus. Projective regular models for abelian varieties, semistable reduction, and the height pairing.Duke Math. J.95(1998), no. 1, 161-212.MR1646554,Zbl 0955.14017, doi:10.1215/S0012-7094-98-09505-9.711,713,714,715,716,717,718 ·Zbl 0955.14017
[19]Li, Yang. Metric SYZ conjecture and non-archimedean geometry. Preprint, 2020. arXiv:2007.01384.734
[20]Mustaţă, Mircea; Nicaise, Johannes. Weight functions on non-Archimedean analytic spaces and the Kontsevich-Soibelman skeleton.Algebr. Geom.2(2015), no. 3, 365- 404.MR3370127,Zbl 1322.14044,arXiv:1212.6328, doi:10.14231/AG-2015-016.722,723 ·Zbl 1322.14044
[21]Mumford, David. An analytic construction of degenerating abelian varieties over complete rings.Compositio Math.24(1972), 239-272.MR352106,Zbl 0241.14020.714,717 ·Zbl 0241.14020
[22]Nicaise, Johannes; Xu, Chenyang. The essential skeleton of a degeneration of algebraic varieties.Amer. J. Math.138(2016), no. 6, 1645-1667.MR3595497,Zbl 1375.14092, arXiv:1307.4041, doi:10.1353/ajm.2016.0049.722 ·Zbl 1375.14092
[23]Nicaise, Johannes; Xu, Chenyang; Yu, Tony Yue. The non-archimedean SYZ fibration.Compos. Math.155(2019), no. 5, 953-972.MR3946280,Zbl 1420.14093, arXiv:1802.00287, doi:10.1112/s0010437x19007152.710,721,722,724,725,728,729, 730,732 ·Zbl 1420.14093
[24]Odaka, Yuji; Oshima, Yoshiki. Collapsing K3 surfaces, tropical geometry and moduli compactifications of Satake, Morgan-Shalen type. MSJ Memoirs, 40.Mathematical Society of Japan, Tokyo, 2021. x+165 pp. ISBN: 978-4-86497-104-1.MR4290084,Zbl 1474.14064, doi:10.1142/e071.734,735 ·Zbl 1474.14064
[25]Overkamp,Otto.DegenerationofKummersurfaces.Math.Proc.Cambridge Philos. Soc.171(2021),no. 1,65-97.MR4268804,Zbl 1483.14044, doi:10.1017/S0305004120000067.714,716,717,721,725,731,732
[26]Raynaud, Michel. Géométrie analytique rigide d’après Tate, Kiehl,⋯.Table Ronde d’Analyse Non Archimédienne(Paris, 1972). Bull. Soc. Math. France, Mém. No. 39-40, 319-327,Soc. Math. France, Paris, 1974.MR0470254,Zbl 0299.14003, doi:10.24033/msmf.170.712 ·Zbl 0299.14003
[27]Rourke, Colin Patrick; Sanderson, Brian Joseph. Introduction to piecewiselinear topology. Reprint Springer Study EditionSpringer-Verlag, Berlin-New York, 1982. viii+123 pp. ISBN: 3-540-11102-6.MR665919,Zbl 0477.57003, doi:10.1007/978-3-64281735-9.719,720 ·Zbl 0477.57003
[28]Strominger, Andrew; Yau, Shing-Tung; Zaslow, Eric. Mirror symmetry is𝑇duality.Nuclear Phys. B479(1996), no. 1-2, 243-259.MR1429831,Zbl 0896.14024, arXiv:hep-th/9606040, doi:10.1016/0550-3213(96)00434-8.708 ·Zbl 0998.81091
[29]Tsutsui, Yuki. On the radiance obstruction of some tropical surfaces (Japanese).Proceeding to The 16th Mathematics Conference for Young Researchers, 2020. https://www.math.sci.hokudai.ac.jp/ wakate/mcyr/2020/en/program.html
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp