Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Asymmetric Rogers-Ramanujan type identities. I: The Andrews-Uncu conjecture.(English)Zbl 1523.11188

In this article, the author establishes two single-symmetric Rogers-Ramanujan type identities,
(i). \(\sum_{n\ge0}\frac{(-1)^{n}q^{3\binom{n}{2}+4n}(q;q^{3})_{n}}{(q^{9};q^{9})_{n}}=\frac{(q^{4};q^{6})_{\infty}(q^{12};q^{18})_{\infty}}{(q^{5};q^{6})_{\infty}(q^{9};q^{18})_{\infty}}\), and
(ii). \(\sum_{n\ge0}\frac{(a;q)_{n}(a^{-1}q^{2};q^{2})_{n}}{(a^{2}q;q^{2})_{n}(q^{3};q^{3})_{n}}(-1)^{n}a^{n}q^{\binom{n}{2}+n} = \frac{(aq;q^{2})_{\infty}(a^{3}q^{3};q^{6})_{\infty}}{(a^{2}q;q^{2})_{\infty}(q^{3};q^{6})_{\infty}}\).
Further, using identity (i) as a key ingredient, and properties of contour integral and 3-dissections, the author proves the Andrews-Uncu Conjecture [G. E. Andrews andA. K. Uncu, Ramanujan J. 61, 715–729 (2023;doi:10.1007/s11139-022-00685-y)].

MSC:

11P84 Partition identities; identities of Rogers-Ramanujan type
05A17 Combinatorial aspects of partitions of integers
33D60 Basic hypergeometric integrals and functions defined by them

Cite

References:

[1]Andrews, George E., An analytic generalization of the Rogers-Ramanujan identities for odd moduli, Proc. Nat. Acad. Sci. U.S.A., 4082-4085 (1974) ·Zbl 0289.10010 ·doi:10.1073/pnas.71.10.4082
[2]Andrews, George E., The theory of partitions, Cambridge Mathematical Library, xvi+255 pp. (1998), Cambridge University Press, Cambridge ·Zbl 0996.11002
[3]G. E. Andrews and A. K. Uncu, Sequences in overpartitions, Ramanujan J. (2023). https://doi.org/10.1007/s11139-022-00685-y. ·Zbl 1547.11117
[4]Bailey, W. N., Some identities in combinatory analysis, Proc. London Math. Soc. (2), 421-425 (1947) ·Zbl 0041.03403 ·doi:10.1112/plms/s2-49.6.421
[5]Bailey, W. N., Identities of the Rogers-Ramanujan type, Proc. London Math. Soc. (2), 1-10 (1948) ·Zbl 0031.39203 ·doi:10.1112/plms/s2-50.1.1
[6]Beukers, Frits, \( \Gamma \)-evaluations of hypergeometric series, Ramanujan J., 677-699 (2022) ·Zbl 1518.33001 ·doi:10.1007/s11139-022-00566-4
[7]Bringmann, Kathrin, Proofs and reductions of various conjectured partition identities of Kanade and Russell, J. Reine Angew. Math., 109-135 (2020) ·Zbl 1447.05023 ·doi:10.1515/crelle-2019-0012
[8]Chern, Shane, Linked partition ideals and Kanade-Russell conjectures, Discrete Math., 111876, 24 pp. (2020) ·Zbl 1440.05021 ·doi:10.1016/j.disc.2020.111876
[9]Corteel, Sylvie, Overpartitions, Trans. Amer. Math. Soc., 1623-1635 (2004) ·Zbl 1040.11072 ·doi:10.1090/S0002-9947-03-03328-2
[10]Corteel, Sylvie, Partitions, \(q\)-series, and modular forms. Lecture hall sequences, \(q\)-series, and asymmetric partition identities, Dev. Math., 53-68 (2012), Springer, New York ·Zbl 1242.05011 ·doi:10.1007/978-1-4614-0028-8\_6
[11]Ebisu, Akihito, Special values of the hypergeometric series, Mem. Amer. Math. Soc., v+96 pp. (2017) ·Zbl 1423.33004 ·doi:10.1090/memo/1177
[12]Erd\'{e}lyi, Arthur, Higher transcendental functions. Vol. II, xviii+396 pp. (1981), Robert E. Krieger Publishing Co., Inc., Melbourne, Fla.
[13]Gasper, George, Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, xxvi+428 pp. (2004), Cambridge University Press, Cambridge ·Zbl 1129.33005 ·doi:10.1017/CBO9780511526251
[14]G\"{o}llnitz, H., Partitionen mit Differenzenbedingungen, J. Reine Angew. Math., 154-190 (1967) ·Zbl 0166.00803 ·doi:10.1515/crll.1967.225.154
[15]Gordon, Basil, A combinatorial generalization of the Rogers-Ramanujan identities, Amer. J. Math., 393-399 (1961) ·Zbl 0100.27303 ·doi:10.2307/2372962
[16]Hirschhorn, Michael D., The power of \(q\), Developments in Mathematics, xxii+415 pp. (2017), Springer, Cham ·Zbl 1456.11001 ·doi:10.1007/978-3-319-57762-3
[17]Kanade, Shashank, {\tt IdentityFinder} and some new identities of Rogers-Ramanujan type, Exp. Math., 419-423 (2015) ·Zbl 1327.11075 ·doi:10.1080/10586458.2015.1015186
[18]Kanade, Shashank, Staircases to analytic sum-sides for many new integer partition identities of Rogers-Ramanujan type, Electron. J. Combin., Paper No. 1.6, 33 pp. (2019) ·Zbl 1409.05018
[19]Kur\c{s}ung\"{o}z, Ka\u{g}an, Andrews-Gordon type series for Kanade-Russell conjectures, Ann. Comb., 835-888 (2019) ·Zbl 1433.05034 ·doi:10.1007/s00026-019-00470-7
[20]V. A. Lebesgue, Sommation de quelques s\'eries, J. Math. Pures Appl. 5 (1840), 42-71.
[21]Paule, Peter, Special functions, \(q\)-series and related topics. A Mathematica \(q\)-analogue of Zeilberger’s algorithm based on an algebraically motivated approach to \(q\)-hypergeometric telescoping, Fields Inst. Commun., 179-210 (1995), Amer. Math. Soc., Providence, RI ·Zbl 0869.33010
[22]S. Ramanujan, Problem 584, J. Indian Math. Soc. 6 (1914), 199-200.
[23]S. Ramanujan and L. J. Rogers, Proof of certain identities in combinatory analysis, Cambr. Phil. Soc. Proc. 19 (1919), 211-216. ·JFM 47.0903.01
[24]Rogers, L. J., Second Memoir on the Expansion of certain Infinite Products, Proc. Lond. Math. Soc., 318-343 (1893/94) ·doi:10.1112/plms/s1-25.1.318
[25]H. Rosengren, Proofs of some partition identities conjectured by Kanade and Russell, Ramanujan J., in press, DOI 10.1007/s11139-021-00389-9. ·Zbl 1523.11189
[26]Russell, Matthew Christopher, Using experimental mathematics to conjecture and prove theorems in the theory of partitions and commutative and non-commutative recurrences, 74 pp. (2016), ProQuest LLC, Ann Arbor, MI
[27]I. Schur, Ein Beitrag zur additiven Zahlentheorie und zur Theorie der Kettenbr\"uche, Sitzungsber. Preuss. Akad. Wiss. Phys.-Math. Klasse (1917), 302-321. ·JFM 46.0201.01
[28]Slater, L. J., A new proof of Rogers’s transformations of infinite series, Proc. London Math. Soc. (2), 460-475 (1951) ·Zbl 0044.06102 ·doi:10.1112/plms/s2-53.6.460
[29]Slater, L. J., Further identities of the Rogers-Ramanujan type, Proc. London Math. Soc. (2), 147-167 (1952) ·Zbl 0046.27204 ·doi:10.1112/plms/s2-54.2.147
[30]Whittaker, E. T., A course of modern analysis, Cambridge Mathematical Library, vi+608 pp. (1996), Cambridge University Press, Cambridge ·Zbl 0951.30002 ·doi:10.1017/CBO9780511608759
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp