[1] | Andrews, George E., An analytic generalization of the Rogers-Ramanujan identities for odd moduli, Proc. Nat. Acad. Sci. U.S.A., 4082-4085 (1974) ·Zbl 0289.10010 ·doi:10.1073/pnas.71.10.4082 |
[2] | Andrews, George E., The theory of partitions, Cambridge Mathematical Library, xvi+255 pp. (1998), Cambridge University Press, Cambridge ·Zbl 0996.11002 |
[3] | G. E. Andrews and A. K. Uncu, Sequences in overpartitions, Ramanujan J. (2023). https://doi.org/10.1007/s11139-022-00685-y. ·Zbl 1547.11117 |
[4] | Bailey, W. N., Some identities in combinatory analysis, Proc. London Math. Soc. (2), 421-425 (1947) ·Zbl 0041.03403 ·doi:10.1112/plms/s2-49.6.421 |
[5] | Bailey, W. N., Identities of the Rogers-Ramanujan type, Proc. London Math. Soc. (2), 1-10 (1948) ·Zbl 0031.39203 ·doi:10.1112/plms/s2-50.1.1 |
[6] | Beukers, Frits, \( \Gamma \)-evaluations of hypergeometric series, Ramanujan J., 677-699 (2022) ·Zbl 1518.33001 ·doi:10.1007/s11139-022-00566-4 |
[7] | Bringmann, Kathrin, Proofs and reductions of various conjectured partition identities of Kanade and Russell, J. Reine Angew. Math., 109-135 (2020) ·Zbl 1447.05023 ·doi:10.1515/crelle-2019-0012 |
[8] | Chern, Shane, Linked partition ideals and Kanade-Russell conjectures, Discrete Math., 111876, 24 pp. (2020) ·Zbl 1440.05021 ·doi:10.1016/j.disc.2020.111876 |
[9] | Corteel, Sylvie, Overpartitions, Trans. Amer. Math. Soc., 1623-1635 (2004) ·Zbl 1040.11072 ·doi:10.1090/S0002-9947-03-03328-2 |
[10] | Corteel, Sylvie, Partitions, \(q\)-series, and modular forms. Lecture hall sequences, \(q\)-series, and asymmetric partition identities, Dev. Math., 53-68 (2012), Springer, New York ·Zbl 1242.05011 ·doi:10.1007/978-1-4614-0028-8\_6 |
[11] | Ebisu, Akihito, Special values of the hypergeometric series, Mem. Amer. Math. Soc., v+96 pp. (2017) ·Zbl 1423.33004 ·doi:10.1090/memo/1177 |
[12] | Erd\'{e}lyi, Arthur, Higher transcendental functions. Vol. II, xviii+396 pp. (1981), Robert E. Krieger Publishing Co., Inc., Melbourne, Fla. |
[13] | Gasper, George, Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, xxvi+428 pp. (2004), Cambridge University Press, Cambridge ·Zbl 1129.33005 ·doi:10.1017/CBO9780511526251 |
[14] | G\"{o}llnitz, H., Partitionen mit Differenzenbedingungen, J. Reine Angew. Math., 154-190 (1967) ·Zbl 0166.00803 ·doi:10.1515/crll.1967.225.154 |
[15] | Gordon, Basil, A combinatorial generalization of the Rogers-Ramanujan identities, Amer. J. Math., 393-399 (1961) ·Zbl 0100.27303 ·doi:10.2307/2372962 |
[16] | Hirschhorn, Michael D., The power of \(q\), Developments in Mathematics, xxii+415 pp. (2017), Springer, Cham ·Zbl 1456.11001 ·doi:10.1007/978-3-319-57762-3 |
[17] | Kanade, Shashank, {\tt IdentityFinder} and some new identities of Rogers-Ramanujan type, Exp. Math., 419-423 (2015) ·Zbl 1327.11075 ·doi:10.1080/10586458.2015.1015186 |
[18] | Kanade, Shashank, Staircases to analytic sum-sides for many new integer partition identities of Rogers-Ramanujan type, Electron. J. Combin., Paper No. 1.6, 33 pp. (2019) ·Zbl 1409.05018 |
[19] | Kur\c{s}ung\"{o}z, Ka\u{g}an, Andrews-Gordon type series for Kanade-Russell conjectures, Ann. Comb., 835-888 (2019) ·Zbl 1433.05034 ·doi:10.1007/s00026-019-00470-7 |
[20] | V. A. Lebesgue, Sommation de quelques s\'eries, J. Math. Pures Appl. 5 (1840), 42-71. |
[21] | Paule, Peter, Special functions, \(q\)-series and related topics. A Mathematica \(q\)-analogue of Zeilberger’s algorithm based on an algebraically motivated approach to \(q\)-hypergeometric telescoping, Fields Inst. Commun., 179-210 (1995), Amer. Math. Soc., Providence, RI ·Zbl 0869.33010 |
[22] | S. Ramanujan, Problem 584, J. Indian Math. Soc. 6 (1914), 199-200. |
[23] | S. Ramanujan and L. J. Rogers, Proof of certain identities in combinatory analysis, Cambr. Phil. Soc. Proc. 19 (1919), 211-216. ·JFM 47.0903.01 |
[24] | Rogers, L. J., Second Memoir on the Expansion of certain Infinite Products, Proc. Lond. Math. Soc., 318-343 (1893/94) ·doi:10.1112/plms/s1-25.1.318 |
[25] | H. Rosengren, Proofs of some partition identities conjectured by Kanade and Russell, Ramanujan J., in press, DOI 10.1007/s11139-021-00389-9. ·Zbl 1523.11189 |
[26] | Russell, Matthew Christopher, Using experimental mathematics to conjecture and prove theorems in the theory of partitions and commutative and non-commutative recurrences, 74 pp. (2016), ProQuest LLC, Ann Arbor, MI |
[27] | I. Schur, Ein Beitrag zur additiven Zahlentheorie und zur Theorie der Kettenbr\"uche, Sitzungsber. Preuss. Akad. Wiss. Phys.-Math. Klasse (1917), 302-321. ·JFM 46.0201.01 |
[28] | Slater, L. J., A new proof of Rogers’s transformations of infinite series, Proc. London Math. Soc. (2), 460-475 (1951) ·Zbl 0044.06102 ·doi:10.1112/plms/s2-53.6.460 |
[29] | Slater, L. J., Further identities of the Rogers-Ramanujan type, Proc. London Math. Soc. (2), 147-167 (1952) ·Zbl 0046.27204 ·doi:10.1112/plms/s2-54.2.147 |
[30] | Whittaker, E. T., A course of modern analysis, Cambridge Mathematical Library, vi+608 pp. (1996), Cambridge University Press, Cambridge ·Zbl 0951.30002 ·doi:10.1017/CBO9780511608759 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.