Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Anti-pre-Lie algebras, Novikov algebras and commutative 2-cocycles on Lie algebras.(English)Zbl 1522.17008

This paper aims to introduce the notion of anti-pre-Lie algebras and then study the relationships between them and the related structures such as anti-\(\mathcal O\)-operators, commutative 2-cocycles on Lie algebras, and Novikov algebras. Let us give some important definitions.
Definition. A vector space \(A\) with a bilinear operation is called a pre-Lie algebra if the following equation is satisfied:
\((x y) z - x (y z)=(yx) z - y (xz).\)
Namely, an algebra \(A\) is a pre-Lie algebra if its associator is left-symmetric, i.e. \((x,y,z)=(y,x,z),\) where \((x,y,z)=(xy)z-x(yz)\). It is known that each pre-Lie algebra is Lie-admissible, i.e. under the commutator product \([x,y]=xy-yz\) it gives a Lie algebra. Using an analogy between associative and anti-associative algebras, the author define the notion of anti-associator \((x,y,z)_{aa}:=(xy)z+x(yz).\) The class of anti-pre-Lie algebras is defined as a class of Lie-admissible algebras with the left-symmetric anti-associator. Namely, we have the following definition.
Definition. A vector space \(A\) with a bilinear operation is called an anti-pre-Lie algebra if the following equations are satisfied:
\(x (y z) - y (x z)=(y x - x y) z\) and \((xy-yx) z + (yz-zy) x + (zx-xz)y = 0.\)

Section 2 is dedicated to the study of anti-pre-Lie algebras and their properties. Namely,
1.
it was proved that each commutative anti-pre-Lie algebra is associative [Proposition 2.6];
2.
some examples of anti-pre-Lie algebras of lengths one are given in Proposition 2.7;
3.
a classification of complex \(2\)-dimensional anti-pre-Lie algebras is given in Proposition 2.10.

Then they introduce the notion of anti-\(\mathcal O\)-operators [Definition 2.12] to interpret anti-pre-Lie algebras. There is a close relationship between anti-pre-Lie algebras and commutative 2-cocycles on Lie algebras. That is, the former can be induced from the latter in the nondegenerate case, whereas there is a natural construction of the latter on the semi-direct product Lie algebras induced from the former. Finally, they summarize these results to exhibit a clear analogy between anti-pre-Lie algebras and pre-Lie algebras.
In Section 3, they first introduce the notion of admissible Novikov algebras as a subclass of anti-pre-Lie algebras, corresponding to Novikov algebras in terms of \(q\)-algebras.
Definition. A Novikov algebra is a pre-Lie algebra \(A\) such that
\((xy) z = (xz) y.\)

Definition. An admissible Novikov algebra is an algebra \(A\) such that:
\(x (y z) - y (x z)=(y x - x y) z\) and \(2x (yz-zy) =(x y) z - (x z) y.\)

It is easy to see that an admissible Novikov algebra is an anti-pre-Lie algebra [Proposition 3.3.]. Then they give the constructions of Novikov algebras and the corresponding admissible Novikov algebras from commutative associative algebras with admissible pairs including derivations. Finally, they extend the correspondence between Novikov algebras and admissible Novikov algebras to the level of Poisson-type structures and hence introduce the notions of anti-pre-Lie Poisson algebras and admissible Novikov-Poisson algebras [Definition 3.35]. The relationships with transposed Poisson algebras and Novikov-Poisson algebras [Proposition 3.46] as well as a tensor theory are given [Theorem 3.48].

MSC:

17A36 Automorphisms, derivations, other operators (nonassociative rings and algebras)
17A40 Ternary compositions
17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights)
17B40 Automorphisms, derivations, other operators for Lie algebras and super algebras
17B60 Lie (super)algebras associated with other structures (associative, Jordan, etc.)
17B63 Poisson algebras
17D25 Lie-admissible algebras

Cite

References:

[1]Agore, A.; Militaru, G., Jacobi and Poisson algebras, J. Noncommut. Geom., 9, 1295-1342 (2015) ·Zbl 1378.17034
[2]Bai, C., Left-symmetric algebras from linear functions, J. Algebra, 281, 651-665 (2004) ·Zbl 1117.17001
[3]Bai, C., A further study on non-abelian phase spaces: left-symmetric algebraic approach and related geometry, Rev. Math. Phys., 18, 545-564 (2006) ·Zbl 1110.17008
[4]Bai, C., A unified algebraic approach to the classical Yang-Baxter equation, J. Phys. A, Math. Theor., 40 (2007) ·Zbl 1118.17008
[5]Bai, C.; Bai, R.; Guo, L.; Wu, Y., Transposed Poisson algebras, Novikov-Poisson algebras, and 3-Lie algebras ·Zbl 1530.17022
[6]Bai, C.; Li, H.; Pei, Y., \( \phi_\epsilon \)-coordinated modules for vertex algebras, J. Algebra, 426, 211-242 (2015) ·Zbl 1329.17026
[7]Bai, C.; Meng, D., The classification of Novikov algebras in low dimensions, J. Phys. A, Math. Gen., 34, 1581-1594 (2001) ·Zbl 1001.17002
[8]Balinskii, A. A.; Novikov, S. P., Poisson brackets of hydrodynamic type, Frobenius algebras and Lie algebras, Sov. Math. Dokl., 32, 228-231 (1985) ·Zbl 0606.58018
[9]Burde, D., Simple left-symmetric algebras with solvable Lie algebra, Manuscr. Math., 95, 397-411 (1998) ·Zbl 0907.17008
[10]Burde, D., Left-symmetric algebras, or pre-Lie algebras in geometry and physics, Cent. Eur. J. Math., 4, 323-357 (2006) ·Zbl 1151.17301
[11]Cantarini, N.; Kac, V., Classification of linearly compact simple Jordan and generalized Poisson superalgebras, J. Algebra, 313, 100-124 (2007) ·Zbl 1173.17023
[12]Chu, B. Y., Symplectic homogeneous spaces, Trans. Am. Math. Soc., 197, 145-159 (1974) ·Zbl 0261.53039
[13]Dotsenko, V., Algebraic structures of F-manifolds via pre-Lie algebras, Ann. Mat. Pura Appl., 198, 517-527 (2019) ·Zbl 1498.18026
[14]Dzhumadil’daev, A., Algebras with skew-symmetric identity of degree 3, J. Math. Sci., 161, 11-30 (2009) ·Zbl 1246.17002
[15]Dzhumadil’daev, A.; Bakirova, A., Simple two-sided anti-Lie-admissible algebras, J. Math. Sci., 161, 31-36 (2009) ·Zbl 1239.17027
[16]Dzhumadil’daev, A.; Zusmanovich, P., Commutative 2-cocycles on Lie algebras, J. Algebra, 324, 732-748 (2010) ·Zbl 1246.17024
[17]Filippov, V. T., A class of simple nonassociative algebras, Mat. Zametki, 45, 101-105 (1989) ·Zbl 0659.17003
[18]Filippov, V. T., Lie algebras satisfying identities of degree 5, Algebra Log., 34, 379-394 (1996)
[19]Frobenius, G., Theorie der hyperkomplexen Größen, Sitzber. Königlich Preuss. Akad. Wiss. Berlin. Sitzber. Königlich Preuss. Akad. Wiss. Berlin, Sitzber. Königlich Preuss. Akad. Wiss. Berlin, 1903, 634-645 (1903), Theorie der hyperkomplexen Größen, II ·JFM 34.0238.02
[20]Gerstenhaber, M., The cohomology structure of an associative ring, Ann. Math., 78, 267-288 (1963) ·Zbl 0131.27302
[21]Gel’fand, I. M.; Dorfman, I. Ya., Hamiltonian operators and algebraic structures related to them, Funct. Anal. Appl., 13, 248-262 (1979) ·Zbl 0437.58009
[22]Guo, L.; Keigher, W., On differential Rota-Baxter algebras, J. Pure Appl. Algebra, 212, 522-540 (2008) ·Zbl 1185.16038
[23]Koszul, J.-L., Domaines bornés homogènes et orbites de groupes de transformations affines, Bull. Soc. Math. Fr., 89, 515-533 (1961) ·Zbl 0144.34002
[24]Kupershmidt, B. A., Non-abelian phase spaces, J. Phys. A, Math. Gen., 27, 2801-2810 (1994) ·Zbl 0842.58030
[25]Kupershmidt, B. A., What a classical r-matrix really is, J. Nonlinear Math. Phys., 6, 448-488 (1999) ·Zbl 1015.17015
[26]Lin, Y.; Liu, X.; Bai, C., Differential antisymmetric infinitesimal bialgebras, coherent derivations and Poisson bialgebras ·Zbl 1514.16028
[27]Okubo, S.; Kamiya, N., Jordan-Lie superalgebra and Jordan-Lie triple system, J. Algebra, 198, 388-411 (1997) ·Zbl 0892.17005
[28]Martnez, C.; Zelmanov, E., Brackets, superalgebras and spectral gap, São Paulo J. Math. Sci., 13, 112-132 (2019) ·Zbl 1446.17034
[29]Medina, A., Flat left-invariant connections adapted to the automorphism structure of a Lie group, J. Differ. Geom., 16, 445-474 (1981) ·Zbl 0486.53026
[30]Su, Y.; Xu, X.; Zhang, H., Derivation-simple algebras and structures of Lie algebras of Witt type, J. Algebra, 233, 642-662 (2000) ·Zbl 0974.17009
[31]Svinolupov, S. I.; Sokolov, V. V., Vector-matrix generalizations of classical integrable equations, Theor. Math. Phys., 100, 959-962 (1994) ·Zbl 0875.35121
[32]Xu, X., On simple Novikov algebras and their irreducible modules, J. Algebra, 185, 905-934 (1996) ·Zbl 0863.17003
[33]Xu, X., Novikov-Poisson algebras, J. Algebra, 190, 253-279 (1997) ·Zbl 0872.17030
[34]Xu, X., New generalized simple Lie algebras of Cartan type over a field with characteristic zero, J. Algebra, 224, 23-58 (2000) ·Zbl 0955.17019
[35]Vinberg, E. B., Convex homogeneous cones, Transl. Mosc. Math. Soc., 12, 340-403 (1963) ·Zbl 0138.43301
[36]Zusmanovich, P., The second homology group of current Lie algebras, Astérisque, 226, 435-452 (1994) ·Zbl 0973.17028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp