[1] | Agore, A.; Militaru, G., Jacobi and Poisson algebras, J. Noncommut. Geom., 9, 1295-1342 (2015) ·Zbl 1378.17034 |
[2] | Bai, C., Left-symmetric algebras from linear functions, J. Algebra, 281, 651-665 (2004) ·Zbl 1117.17001 |
[3] | Bai, C., A further study on non-abelian phase spaces: left-symmetric algebraic approach and related geometry, Rev. Math. Phys., 18, 545-564 (2006) ·Zbl 1110.17008 |
[4] | Bai, C., A unified algebraic approach to the classical Yang-Baxter equation, J. Phys. A, Math. Theor., 40 (2007) ·Zbl 1118.17008 |
[5] | Bai, C.; Bai, R.; Guo, L.; Wu, Y., Transposed Poisson algebras, Novikov-Poisson algebras, and 3-Lie algebras ·Zbl 1530.17022 |
[6] | Bai, C.; Li, H.; Pei, Y., \( \phi_\epsilon \)-coordinated modules for vertex algebras, J. Algebra, 426, 211-242 (2015) ·Zbl 1329.17026 |
[7] | Bai, C.; Meng, D., The classification of Novikov algebras in low dimensions, J. Phys. A, Math. Gen., 34, 1581-1594 (2001) ·Zbl 1001.17002 |
[8] | Balinskii, A. A.; Novikov, S. P., Poisson brackets of hydrodynamic type, Frobenius algebras and Lie algebras, Sov. Math. Dokl., 32, 228-231 (1985) ·Zbl 0606.58018 |
[9] | Burde, D., Simple left-symmetric algebras with solvable Lie algebra, Manuscr. Math., 95, 397-411 (1998) ·Zbl 0907.17008 |
[10] | Burde, D., Left-symmetric algebras, or pre-Lie algebras in geometry and physics, Cent. Eur. J. Math., 4, 323-357 (2006) ·Zbl 1151.17301 |
[11] | Cantarini, N.; Kac, V., Classification of linearly compact simple Jordan and generalized Poisson superalgebras, J. Algebra, 313, 100-124 (2007) ·Zbl 1173.17023 |
[12] | Chu, B. Y., Symplectic homogeneous spaces, Trans. Am. Math. Soc., 197, 145-159 (1974) ·Zbl 0261.53039 |
[13] | Dotsenko, V., Algebraic structures of F-manifolds via pre-Lie algebras, Ann. Mat. Pura Appl., 198, 517-527 (2019) ·Zbl 1498.18026 |
[14] | Dzhumadil’daev, A., Algebras with skew-symmetric identity of degree 3, J. Math. Sci., 161, 11-30 (2009) ·Zbl 1246.17002 |
[15] | Dzhumadil’daev, A.; Bakirova, A., Simple two-sided anti-Lie-admissible algebras, J. Math. Sci., 161, 31-36 (2009) ·Zbl 1239.17027 |
[16] | Dzhumadil’daev, A.; Zusmanovich, P., Commutative 2-cocycles on Lie algebras, J. Algebra, 324, 732-748 (2010) ·Zbl 1246.17024 |
[17] | Filippov, V. T., A class of simple nonassociative algebras, Mat. Zametki, 45, 101-105 (1989) ·Zbl 0659.17003 |
[18] | Filippov, V. T., Lie algebras satisfying identities of degree 5, Algebra Log., 34, 379-394 (1996) |
[19] | Frobenius, G., Theorie der hyperkomplexen Größen, Sitzber. Königlich Preuss. Akad. Wiss. Berlin. Sitzber. Königlich Preuss. Akad. Wiss. Berlin, Sitzber. Königlich Preuss. Akad. Wiss. Berlin, 1903, 634-645 (1903), Theorie der hyperkomplexen Größen, II ·JFM 34.0238.02 |
[20] | Gerstenhaber, M., The cohomology structure of an associative ring, Ann. Math., 78, 267-288 (1963) ·Zbl 0131.27302 |
[21] | Gel’fand, I. M.; Dorfman, I. Ya., Hamiltonian operators and algebraic structures related to them, Funct. Anal. Appl., 13, 248-262 (1979) ·Zbl 0437.58009 |
[22] | Guo, L.; Keigher, W., On differential Rota-Baxter algebras, J. Pure Appl. Algebra, 212, 522-540 (2008) ·Zbl 1185.16038 |
[23] | Koszul, J.-L., Domaines bornés homogènes et orbites de groupes de transformations affines, Bull. Soc. Math. Fr., 89, 515-533 (1961) ·Zbl 0144.34002 |
[24] | Kupershmidt, B. A., Non-abelian phase spaces, J. Phys. A, Math. Gen., 27, 2801-2810 (1994) ·Zbl 0842.58030 |
[25] | Kupershmidt, B. A., What a classical r-matrix really is, J. Nonlinear Math. Phys., 6, 448-488 (1999) ·Zbl 1015.17015 |
[26] | Lin, Y.; Liu, X.; Bai, C., Differential antisymmetric infinitesimal bialgebras, coherent derivations and Poisson bialgebras ·Zbl 1514.16028 |
[27] | Okubo, S.; Kamiya, N., Jordan-Lie superalgebra and Jordan-Lie triple system, J. Algebra, 198, 388-411 (1997) ·Zbl 0892.17005 |
[28] | Martnez, C.; Zelmanov, E., Brackets, superalgebras and spectral gap, São Paulo J. Math. Sci., 13, 112-132 (2019) ·Zbl 1446.17034 |
[29] | Medina, A., Flat left-invariant connections adapted to the automorphism structure of a Lie group, J. Differ. Geom., 16, 445-474 (1981) ·Zbl 0486.53026 |
[30] | Su, Y.; Xu, X.; Zhang, H., Derivation-simple algebras and structures of Lie algebras of Witt type, J. Algebra, 233, 642-662 (2000) ·Zbl 0974.17009 |
[31] | Svinolupov, S. I.; Sokolov, V. V., Vector-matrix generalizations of classical integrable equations, Theor. Math. Phys., 100, 959-962 (1994) ·Zbl 0875.35121 |
[32] | Xu, X., On simple Novikov algebras and their irreducible modules, J. Algebra, 185, 905-934 (1996) ·Zbl 0863.17003 |
[33] | Xu, X., Novikov-Poisson algebras, J. Algebra, 190, 253-279 (1997) ·Zbl 0872.17030 |
[34] | Xu, X., New generalized simple Lie algebras of Cartan type over a field with characteristic zero, J. Algebra, 224, 23-58 (2000) ·Zbl 0955.17019 |
[35] | Vinberg, E. B., Convex homogeneous cones, Transl. Mosc. Math. Soc., 12, 340-403 (1963) ·Zbl 0138.43301 |
[36] | Zusmanovich, P., The second homology group of current Lie algebras, Astérisque, 226, 435-452 (1994) ·Zbl 0973.17028 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.