[1] | Feng, J. D.; Cheng, L. S., Percolation characteristics of fractured anisotropic reservoir, J China Univ Pet, 33, 01, 78-82 (2009) |
[2] | Lee, S. H., Society of petroleum engineers SPE reservoir simulation symposium - (1997.06.8-1997.06.11), (Proceedings of SPE reservoir simulation symposium - finite difference simulation of geologically complex reservoirs with tensor permeabilities (1997)) |
[3] | Pal, M.; Edwards, M. G., A family of multi-point flux approximation schemes for general element types in two and three dimensions with convergence performance, Int J Numer Methods Fluids, 69, 11, 1797-1817 (2012) ·Zbl 1253.76125 |
[4] | Michael, Finite volume discretization with imposed flux continuity for the general tensor pressure equation, Comput Geosci, 2, 4, 259-290 (1998) ·Zbl 0945.76049 |
[5] | Edwards, M. G., Unstructured, control-volume distributed, full-tensor finite-volume schemes with flow based grids, Comput Geosci, 6, 3-4, 433-452 (2002) ·Zbl 1036.76034 |
[6] | Marcondes, F., A 3D hybrid element-based finite-volume method for heterogeneous and anisotropic compositional reservoir simulation, J Pet Sci Eng, 108, 342-351 (2013), Complete |
[7] | Dong, P.; Niu, Y.; Li, L., Finite element numerical simulation of seepage in an anisotropic reservoir, Chin J Rock Mech Eng, 26, 2633-2640 (2007) |
[8] | Shan, X.; Yao, J., Numerical simulation for two-phase flow in heterogeneous reservoirs based on full permeability tensor, J China Univ Pet, 02, 101-106 (2011) |
[9] | Bause, M., Higher order mixed finite element approximation of subsurface water flow, Pamm, 7, 1, 1024703-1024704 (2007) |
[10] | Abushaikha, A. S.; Terekhov, K. M., A fully implicit mimetic finite difference scheme for general purpose subsurface reservoir simulation with full tensor permeability - ScienceDirect, J Comput Phys, 406, 109-194 (2020) ·Zbl 1453.76120 |
[11] | Benito, J. J.; Urena, F.; Gavete, L., Influence of several factors in the generalized finite difference method, Appl Math Model, 25, 12, 1039-1053 (2001) ·Zbl 0994.65111 |
[12] | Benito, J. J.; Urena, F.; Gavete, L.; Alvarez, R., An h-adaptive method in the generalized finite differences, Comput Methods Appl Mech Eng, 192, 5-6, 735-759 (2003) ·Zbl 1024.65099 |
[13] | Gu, Y.; Qu, W.; Chen, W.; Song, L.; Zhang, C., The generalized finite difference method for long-time dynamic modeling of three-dimensional coupled thermoelasticity problems, J Comput Phys, 384, 42-59 (2019) ·Zbl 1451.74215 |
[14] | Xia, H.; Gu, Y., Generalized finite difference method for electroelastic analysis of three-dimensional piezoelectric structures, Appl Math Lett, 117, 2, Article 107084 pp. (2021) ·Zbl 1462.74165 |
[15] | Xia, H.; Gu, Y., Short communication: the generalized finite difference method for electroelastic analysis of 2D piezoelectric structures, Eng Anal Bound Elem, 124, 82-86 (2021) ·Zbl 1464.74365 |
[16] | Urena, F.; Salete, E.; Benito, J. J., Solving third- and fourth-order partial differential equations using GFDM: application to solve problems of plates, Int J Comput Math, 89, 3, 366-376 (2012) ·Zbl 1242.65217 |
[17] | Li, P.-W.; Fan, C.-M., Generalized finite difference method for two-dimensional shallow water equations, Eng Anal Bound Elem, 80, 58-71 (2017) ·Zbl 1403.76133 |
[18] | Qu, W.; He, H., A spatial-temporal GFDM with an additional condition for transient heat conduction analysis of FGMs, Appl Math Lett, 110, Article 106579 pp. (2020) ·Zbl 1452.80005 |
[19] | Benito, J. J.; Ure˜na, F.; Gavete, L.; Salete, E.; Ure˜na, M., Implementations with generalized finite differences of the displacements and velocity-stress Equations of seismic wave propagation problem, Appl Math Model, 52, 1-14 (2017) ·Zbl 1480.65203 |
[20] | Wang, Y.; Gu, Y.; Fan, C.-M.; Chen, W.; Zhang, C., Domain-decomposition generalized finite difference method for stress analysis in multi-layered elastic materials, Eng Anal Bound Elem, 94, 94-102 (2018) ·Zbl 1403.74282 |
[21] | Fan, C. M.; Li, P. W., Generalized finite difference method for solving two-dimensional Burgers’ equations, Proc Eng, 79, 55-60 (2014) |
[22] | Li, P.-W., Space-time generalized finite difference nonlinear model for solving unsteady Burgers’ equations, Appl Math Lett, 114, Article 106896 pp. (2021) ·Zbl 1458.65110 |
[23] | Fu, Z.-J.; Xie, Z.-Y.; Ji, S.-Y.; Tsai, C.-C.; Li, A.-L., Meshless generalized finite difference method for water wave interactions with multiple-bottom-seated-cylinder-array structures, Ocean Eng, 195, Article 106736 pp. (2020) |
[24] | Yan, Gu; Lei, W.; Wen, C., Application of the meshless generalized finite difference method to inverse heat source problems, Int J Heat Mass Transf, 108, A, 721-729 (2017) |
[25] | Fu, Z.-J.; Tang, Z.-C.; Zhao, H.-T.; Li, P.-W.; Rabczuk, T., Numerical solutions of the coupled unsteady nonlinear convection-diffusion equations based on generalized finite difference method, Eur Phys J Plus, 134, 6, 272 (2019) |
[26] | Gu, Y.; Sun, H. G., A meshless method for solving three-dimensional time fractional diffusion equation with variable-order derivatives, Appl Math Model, 78, 539-549 (2020) ·Zbl 1481.65130 |
[27] | Chen, S. Y.; Hsu, K. C.; Fan, C. M., Improvement of generalized finite difference method for stochastic subsurface flow modeling - ScienceDirect, J Comput Phys, 429, Article 110002 pp. (2021) ·Zbl 07500737 |
[28] | Gavete, L.; Gavete, M. L.; Benito, J. J., Improvements of generalized finite difference method and comparison with other meshless method, Appl Math Model, 27, 10, 831-847 (2003) ·Zbl 1046.65085 |
[29] | Rao, X., An upwind general finite difference method (GFDM) and its modeling of heat and mass transfer in porous media, Computational Particle Mechanics (2022), Under review |
[30] | Rao, X.; Liu, Y.; Zhao, H., An upwind generalized finite difference method for meshless solution of two-phase porous flow equations, Eng Anal Bound Elem, 137, 105-118 (2022) ·Zbl 1521.76577 |
[31] | Rao, X.; Xu, Y.; Liu, D.; Liu, Y.; Hu, Y., A general physics-based data-driven framework for numerical simulation and history matching of reservoirs, Adv Geo-Energy Res, 5, 4, 422-436 (2021) |
[32] | Liu, G. R.; Gu, Y. T., An introduction to meshfree methods and their programming (2005), Springer Science & Business Media |
[33] | Prelec, D., The probability weighting function, Smoothed particle hydrodynamics — a meshfree method (2004), Econom. 66 (1998) 497. ·Zbl 1009.91007 |
[34] | Xu, Y.; Sheng, G.; Zhao, H., A new approach for gas-water flow simulation in multi-fractured horizontal wells of shale gas reservoirs (2021), Journal of Petroleum Science and Engineering, 199: 108292 |
[35] | Liu, G. R.; Liu, M. B.; Li, S. F., Smoothed particle hydrodynamics — a meshfree method (2004), World Scientific |
[36] | Rao, X.; Xin, L.; He, Y., Numerical simulation of two-phase heat and mass transfer in fractured reservoirs based on projection-based embedded discrete fracture model (pEDFM), J Pet Sci Eng, 208, Article 109323 pp. (2022) |
[37] | Rao, X.; Liu, Y., A numerical modelling method of fractured reservoirs with embedded meshes and topological fracture projection configurations, Comput Model Eng Sci (2022) |
[38] | Chen, Q. Y.; Mifflin, R. T.; Wan, J., A new multipoint flux approximation for reservoir simulation, (SPE reservoir simulation symposium (2007), OnePetro) |
[39] | Milewski, S., Meshless finite difference method with higher order approximation—applications in mechanics, Arch Comput Meth Eng, 19, 1, 1-49 (2012) ·Zbl 1354.74313 |