Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Generalized finite difference method (GFDM) based analysis for subsurface flow problems in anisotropic formation.(English)Zbl 1521.76609


MSC:

76M20 Finite difference methods applied to problems in fluid mechanics
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
76S05 Flows in porous media; filtration; seepage

Cite

References:

[1]Feng, J. D.; Cheng, L. S., Percolation characteristics of fractured anisotropic reservoir, J China Univ Pet, 33, 01, 78-82 (2009)
[2]Lee, S. H., Society of petroleum engineers SPE reservoir simulation symposium - (1997.06.8-1997.06.11), (Proceedings of SPE reservoir simulation symposium - finite difference simulation of geologically complex reservoirs with tensor permeabilities (1997))
[3]Pal, M.; Edwards, M. G., A family of multi-point flux approximation schemes for general element types in two and three dimensions with convergence performance, Int J Numer Methods Fluids, 69, 11, 1797-1817 (2012) ·Zbl 1253.76125
[4]Michael, Finite volume discretization with imposed flux continuity for the general tensor pressure equation, Comput Geosci, 2, 4, 259-290 (1998) ·Zbl 0945.76049
[5]Edwards, M. G., Unstructured, control-volume distributed, full-tensor finite-volume schemes with flow based grids, Comput Geosci, 6, 3-4, 433-452 (2002) ·Zbl 1036.76034
[6]Marcondes, F., A 3D hybrid element-based finite-volume method for heterogeneous and anisotropic compositional reservoir simulation, J Pet Sci Eng, 108, 342-351 (2013), Complete
[7]Dong, P.; Niu, Y.; Li, L., Finite element numerical simulation of seepage in an anisotropic reservoir, Chin J Rock Mech Eng, 26, 2633-2640 (2007)
[8]Shan, X.; Yao, J., Numerical simulation for two-phase flow in heterogeneous reservoirs based on full permeability tensor, J China Univ Pet, 02, 101-106 (2011)
[9]Bause, M., Higher order mixed finite element approximation of subsurface water flow, Pamm, 7, 1, 1024703-1024704 (2007)
[10]Abushaikha, A. S.; Terekhov, K. M., A fully implicit mimetic finite difference scheme for general purpose subsurface reservoir simulation with full tensor permeability - ScienceDirect, J Comput Phys, 406, 109-194 (2020) ·Zbl 1453.76120
[11]Benito, J. J.; Urena, F.; Gavete, L., Influence of several factors in the generalized finite difference method, Appl Math Model, 25, 12, 1039-1053 (2001) ·Zbl 0994.65111
[12]Benito, J. J.; Urena, F.; Gavete, L.; Alvarez, R., An h-adaptive method in the generalized finite differences, Comput Methods Appl Mech Eng, 192, 5-6, 735-759 (2003) ·Zbl 1024.65099
[13]Gu, Y.; Qu, W.; Chen, W.; Song, L.; Zhang, C., The generalized finite difference method for long-time dynamic modeling of three-dimensional coupled thermoelasticity problems, J Comput Phys, 384, 42-59 (2019) ·Zbl 1451.74215
[14]Xia, H.; Gu, Y., Generalized finite difference method for electroelastic analysis of three-dimensional piezoelectric structures, Appl Math Lett, 117, 2, Article 107084 pp. (2021) ·Zbl 1462.74165
[15]Xia, H.; Gu, Y., Short communication: the generalized finite difference method for electroelastic analysis of 2D piezoelectric structures, Eng Anal Bound Elem, 124, 82-86 (2021) ·Zbl 1464.74365
[16]Urena, F.; Salete, E.; Benito, J. J., Solving third- and fourth-order partial differential equations using GFDM: application to solve problems of plates, Int J Comput Math, 89, 3, 366-376 (2012) ·Zbl 1242.65217
[17]Li, P.-W.; Fan, C.-M., Generalized finite difference method for two-dimensional shallow water equations, Eng Anal Bound Elem, 80, 58-71 (2017) ·Zbl 1403.76133
[18]Qu, W.; He, H., A spatial-temporal GFDM with an additional condition for transient heat conduction analysis of FGMs, Appl Math Lett, 110, Article 106579 pp. (2020) ·Zbl 1452.80005
[19]Benito, J. J.; Ure˜na, F.; Gavete, L.; Salete, E.; Ure˜na, M., Implementations with generalized finite differences of the displacements and velocity-stress Equations of seismic wave propagation problem, Appl Math Model, 52, 1-14 (2017) ·Zbl 1480.65203
[20]Wang, Y.; Gu, Y.; Fan, C.-M.; Chen, W.; Zhang, C., Domain-decomposition generalized finite difference method for stress analysis in multi-layered elastic materials, Eng Anal Bound Elem, 94, 94-102 (2018) ·Zbl 1403.74282
[21]Fan, C. M.; Li, P. W., Generalized finite difference method for solving two-dimensional Burgers’ equations, Proc Eng, 79, 55-60 (2014)
[22]Li, P.-W., Space-time generalized finite difference nonlinear model for solving unsteady Burgers’ equations, Appl Math Lett, 114, Article 106896 pp. (2021) ·Zbl 1458.65110
[23]Fu, Z.-J.; Xie, Z.-Y.; Ji, S.-Y.; Tsai, C.-C.; Li, A.-L., Meshless generalized finite difference method for water wave interactions with multiple-bottom-seated-cylinder-array structures, Ocean Eng, 195, Article 106736 pp. (2020)
[24]Yan, Gu; Lei, W.; Wen, C., Application of the meshless generalized finite difference method to inverse heat source problems, Int J Heat Mass Transf, 108, A, 721-729 (2017)
[25]Fu, Z.-J.; Tang, Z.-C.; Zhao, H.-T.; Li, P.-W.; Rabczuk, T., Numerical solutions of the coupled unsteady nonlinear convection-diffusion equations based on generalized finite difference method, Eur Phys J Plus, 134, 6, 272 (2019)
[26]Gu, Y.; Sun, H. G., A meshless method for solving three-dimensional time fractional diffusion equation with variable-order derivatives, Appl Math Model, 78, 539-549 (2020) ·Zbl 1481.65130
[27]Chen, S. Y.; Hsu, K. C.; Fan, C. M., Improvement of generalized finite difference method for stochastic subsurface flow modeling - ScienceDirect, J Comput Phys, 429, Article 110002 pp. (2021) ·Zbl 07500737
[28]Gavete, L.; Gavete, M. L.; Benito, J. J., Improvements of generalized finite difference method and comparison with other meshless method, Appl Math Model, 27, 10, 831-847 (2003) ·Zbl 1046.65085
[29]Rao, X., An upwind general finite difference method (GFDM) and its modeling of heat and mass transfer in porous media, Computational Particle Mechanics (2022), Under review
[30]Rao, X.; Liu, Y.; Zhao, H., An upwind generalized finite difference method for meshless solution of two-phase porous flow equations, Eng Anal Bound Elem, 137, 105-118 (2022) ·Zbl 1521.76577
[31]Rao, X.; Xu, Y.; Liu, D.; Liu, Y.; Hu, Y., A general physics-based data-driven framework for numerical simulation and history matching of reservoirs, Adv Geo-Energy Res, 5, 4, 422-436 (2021)
[32]Liu, G. R.; Gu, Y. T., An introduction to meshfree methods and their programming (2005), Springer Science & Business Media
[33]Prelec, D., The probability weighting function, Smoothed particle hydrodynamics — a meshfree method (2004), Econom. 66 (1998) 497. ·Zbl 1009.91007
[34]Xu, Y.; Sheng, G.; Zhao, H., A new approach for gas-water flow simulation in multi-fractured horizontal wells of shale gas reservoirs (2021), Journal of Petroleum Science and Engineering, 199: 108292
[35]Liu, G. R.; Liu, M. B.; Li, S. F., Smoothed particle hydrodynamics — a meshfree method (2004), World Scientific
[36]Rao, X.; Xin, L.; He, Y., Numerical simulation of two-phase heat and mass transfer in fractured reservoirs based on projection-based embedded discrete fracture model (pEDFM), J Pet Sci Eng, 208, Article 109323 pp. (2022)
[37]Rao, X.; Liu, Y., A numerical modelling method of fractured reservoirs with embedded meshes and topological fracture projection configurations, Comput Model Eng Sci (2022)
[38]Chen, Q. Y.; Mifflin, R. T.; Wan, J., A new multipoint flux approximation for reservoir simulation, (SPE reservoir simulation symposium (2007), OnePetro)
[39]Milewski, S., Meshless finite difference method with higher order approximation—applications in mechanics, Arch Comput Meth Eng, 19, 1, 1-49 (2012) ·Zbl 1354.74313
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp