Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Generalized finite difference method based meshless analysis for coupled two-phase porous flow and geomechanics.(English)Zbl 1521.76562


MSC:

76M20 Finite difference methods applied to problems in fluid mechanics
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
76U60 Geophysical flows
86A05 Hydrology, hydrography, oceanography

Software:

ILUT

Cite

References:

[1]Terzaghi, K. T., Theoretical soil mechanics (1943), INC
[2]Biot, Maurice A., General theory of three-dimensional consolidation, J Appl Phys, 12, 2, 155-164 (1941) ·JFM 67.0837.01
[3]Biot, M. A., General solutions of equations of elasticity and consolidation for a porous material, J Appl Phys, 23, 91-96 (1956) ·Zbl 0074.19101
[4]Van den Hoek, P. J.; Kooijman, A. P.; Bree, P. D., Horizontal-wellbore stability and sand production in weakly consolidated sandstones, J SPE Drill Complet, V15, 4, 274-283 (2000)
[5]Xueqing, TENG; Mian, CHEN; Yan, JIN; Yunhu, LU; Yang, XIA, Poroelastic dynamics mechanisms of wellbore instability in tight formations, Pet Sci Bull, 2, 4, 478-489 (2017)
[6]Michael, S.; Bruno, Geomechanical and decision analyses for mitigating compaction-related casing damage, SPE Drill Complet, V17, 3, 179-188 (2002)
[7]Xiaorong, L.; Chenwang, G.; Yongcun, F.; Zechen, D., Numerical study of shear deformation of casings during hydraulic fracturing considering wellbore loading history, Pet Sci Bull, 02, 245-261 (2021)
[8]Fredrich, J. T.; Arguello, J. G.; Deitrick, G. L., Geomechanical modeling of reservoir compaction, surface subsidence, and casing damage at the Belridge Diatomite Field, SPE Reserv Eval Eng, V3, 4, 348-359 (2000)
[9]Schutjens, P. M.T. M.; Hanssen, T. H.; Hettema, M. H.H., Compaction-induced porosity/permeability reduction in sandstone reservoirs: data and model for elasticity-dominated deformation, SPE Reserv Eval Eng, V7, 3, 202-214 (2004)
[10]Cook, C. C.; Andersen, M. A.; Halle, G., An approach to simulating the effects of water-induced compaction in a north sea reservoir, SPE Reserv Eval Eng, V4, 2, 121-127 (2001)
[11]tran, David; Settari, A.; Nghiem, Long, New iterative coupling between a reservoir simulator and a geomechanics module, SPE J, V9, 3, 362-369 (2004)
[12]Vaziri, H. H., Coupled fluid flow and stress analysis of oil sands subject to heating, J Can Pet Technol, 27, 5, 84-91 (1988)
[13]Lewis, R. W.; Sukirman, Y., Finite element modelling of three-phase flow in deforming saturated oil reservoirs, Int J Numer Anal Methods Geomech, 17, 577-598 (1993) ·Zbl 0785.76042
[14]Fung, LSK., Coupled geomechanical-thermal simulation for deforming heavy-oil reservoirs, JCPT, 4, 22-28 (1994)
[15]Heffer, K. J.; Fox, R. J.; McGill, C. A., Novel techniques show links between reservoir flow directionality, earth stress, fault structure and geomechanical changes in mature waterfloods, SPE J, V2, 2, 91-98 (1997)
[16]Osorio, J. G.; Her-Yuan, C.; Lawrence, W. T., Numerical simulation of the impact of flow-induced geomechanical response on the production of stress-sensitive reservoirs, Proceedings of the SPE reservoir simulation symposium. OnePetro, 51929 (1999)
[17]Fanchi, J. R., Estimating geomechanical properties using an integrated flow model, SPE Reserv Eval Eng, 6, 2, 108-116 (2003)
[18]Collins, P. M., Geomechanical effects on the SAGD process, SPE Reserv Eval Eng, 10, 4, 367-375 (2007)
[19]Dean, R. H.; Gai, X.; Stone, C. M., A comparison of techniques for coupling porous flow and geomechanics, Spe J, 11, 1, 132-140 (2006)
[20]Kanj, M. Y.; Abousleiman, Y. N., Taming complexities of coupled geomechanics in rock testing: from assessing reservoir compaction to analyzing stability of expandable sand screens and solid tubulars, J Graph Tool, 12, 3, 293-304 (2007)
[21]Bear, J., & Bachmat, Y. (1990). Introduction to modeling of transport phenomena in porous media. Vol. 4. Springer Science & Business Media, 2012. ·Zbl 0743.76003
[22]Zhou, J.; Zhang, Y.; Chen, J. K., Numerical simulation of compressible gas flow and heat transfer in a microchannel surrounded by solid media, Int J Heat Fluid Flow, 28, 6, 1484-1491 (2007)
[23]Lewis, R. W.; Roberts, P. J.; Schrefler, B. A., Finite element modeling of two-phase heat and fluid flow in deforming porous media, Transp Porous Media, 4, 4, 319-334 (1989)
[24]Wu, Y. S.; Pruess, K., Numerical simulation of non-isothermal multiphase tracer transport in heterogeneous fractured porous media, Adv Water Res, 23, 7, 699-723 (2000)
[25]Liu, G. R.; Gu, Y. T., An introduction to meshfree methods and their programming (2005), Springer Science & Business Media
[26]Liu, G. R., Meshfree methods: moving beyond the finite element method (2009), CRC press
[27]Zhang, Y.; Shao, K. R.; Guo, Y.; Zhu, J.; Xie, D. X.; Lavers, J. D., An improved multiquadric collocation method for 3-D electromagnetic problems, IEEE Trans Magn, 43, 4, 1509-1512 (2007)
[28]Chantasiriwan, S. (2007). Multiquadric collocation method for time-dependent heat conduction problems with temperature-dependent thermal properties, 109-113.
[29]Zerroukat, M.; Power, H.; Chen, C., A numerical method for heat transfer problems using collocation and radial basis functions, Int J Numer Methods Eng, 42, 7, 1263-1278 (1998) ·Zbl 0907.65095
[30]Chantasiriwan, S., Performance of multiquadric collocation method in solving lid-driven cavity flow problem with low Reynolds number, Comput Model Eng Sci, 15, 3, 137 (2006)
[31]Łarler, B. (2003). MESH œ FREE COMPUTATIONAL FLUID DYNAMICS: A RADIAL BASIS FUNCTION COLLOCATION METHOD APPROACH.
[32]Shu, C.; Ding, H.; Yeo, K. S., Computation of incompressible Navier-Stokes equations by local RBF-based differential quadrature method, CMES, 7, 2, 195-206 (2005) ·Zbl 1106.76427
[33]Wang, L.; Qian, Z.; Zhou, Y.; Peng, Y., A weighted meshfree collocation method for incompressible flows using radial basis functions, J Comput Phys, 401, Article 108964 pp. (2020) ·Zbl 1453.65364
[34]Nuss, W. A.; Titley, D. W., Use of multiquadric interpolation for meteorological objective analysis, Mon Weather Rev, 122, 7, 1611-1631 (1994)
[35]Benito, J. J.; Urena, F.; Gavete, L., Influence of several factors in the generalized finite difference method, Appl Math Modell, 25, 12, 1039-1053 (2001) ·Zbl 0994.65111
[36]Tadeusz, Liszka., An interpolation method for an irregular net of nodes, Int J Numer Method Eng, 20, 9, 1599-1612 (1984), 32 ·Zbl 0544.65006
[37]Liszka, T.; Orkisz, J., The finite difference method at arbitrary irregular grids and its application in applied mechanics, Comput Struct, 11, 1-2, 83-95 (1980) ·Zbl 0427.73077
[38]Benito, J. J.; Urena, F.; Gavete, L.; Alvarez, R., An h-adaptive method in the generalized finite differences, Comput Methods Appl Mech Eng, 192, 5-6, 735-759 (2003) ·Zbl 1024.65099
[39]Gavete, L.; Gavete, M. L.; Benito, J., Improvements of generalized finite difference method and comparison with other meshless methods, Appl Math Modell, 27, 10, 831-847 (2003) ·Zbl 1046.65085
[40]Li, P. W.; Fan, C. M., Generalized finite difference method for two-dimensional shallow water equations, Eng Anal Boundary Elem, 80, 58-71 (2017) ·Zbl 1403.76133
[41]Ureña, F.; Salete, E.; Benito, J. J.; Gavete, L., Solving third-and fourth-order partial differential equations using GFDM: application to solve problems of plates, Int J Comput Math, 89, 3, 366-376 (2012) ·Zbl 1242.65217
[42]Fu, Z. J.; Tang, Z. C.; Zhao, H. T.; Li, P. W.; Rabczuk, T., Numerical solutions of the coupled unsteady nonlinear convection-diffusion equations based on generalized finite difference method, Eur Phys J Plus, 134, 6, 1-20 (2019)
[43]Gu, Y.; Sun, H., A meshless method for solving three-dimensional time fractional diffusion equation with variable-order derivatives, Appl Math Modell, 78, 539-549 (2020) ·Zbl 1481.65130
[44]Gu, Y.; Qu, W.; Chen, W.; Song, L.; Zhang, C., The generalized finite difference method for long-time dynamic modeling of three-dimensional coupled thermoelasticity problems, J Comput Phys, 384, 42-59 (2019) ·Zbl 1451.74215
[45]Qu, W.; He, H., A spatial-temporal GFDM with an additional condition for transient heat conduction analysis of FGMs, Appl Math Lett, 110, Article 106579 pp. (2020) ·Zbl 1452.80005
[46]Benito, J. J.; Ureña, F.; Gavete, L.; Salete, E.; Ureña, M., Implementations with generalized finite differences of the displacements and velocity-stress formulations of seismic wave propagation problem, Appl Math Modell, 52, 1-14 (2017) ·Zbl 1480.65203
[47]Wang, Y.; Gu, Y.; Fan, C. M.; Chen, W.; Zhang, C., Domain-decomposition generalized finite difference method for stress analysis in multi-layered elastic materials, Eng Anal Bound Elem, 94, 94-102 (2018) ·Zbl 1403.74282
[48]Fan, C. M.; Li, P. W., Generalized finite difference method for solving two-dimensional Burgers’ equations, Procedia Eng, 79, 55-60 (2014)
[49]Li, P. W., Space-time generalized finite difference nonlinear model for solving unsteady Burgers’ equations, Appl Math Lett, 114, Article 106896 pp. (2021) ·Zbl 1458.65110
[50]Chavez-Negrete, C.; Dominguez-Mota, F. J.; Santana-Quinteros, D., Numerical solution of Richards’ equation of water flow by generalized finite differences, Comput Geotech, 101, 168-175 (2018), SEP.
[51]Tinoco-Guerrero, G.; Dominguez-Mota, F. J.; Gaona-Arias, A., A stability analysis for a generalized finite-difference scheme applied to the pure advection equation, Math Comput Simul, 147, may, 293-300 (2018) ·Zbl 1540.65336
[52]Tinoco-Guerrero, G.; Domínguez-Mota, FJ; Tinoco-Ruiz, J. G., A study of the stability for a generalized finite-difference scheme applied to the advection-diffusion equation, Math Comput Simul (MATCOM), 176 (2020) ·Zbl 1510.76115
[53]Fu, Z. J.; Xie, Z. Y.; Ji, S. Y.; Tsai, C. C.; Li, A. L., Meshless generalized finite difference method for water wave interactions with multiple-bottom-seated-cylinder-array structures, Ocean Eng, 195, Article 106736 pp. (2020)
[54]Gu, Y.; Wang, L.; Chen, W.; Zhang, C.; He, X., Application of the meshless generalized finite difference method to inverse heat source problems, Int J Heat Mass Transf, 108, 721-729 (2017)
[55]Zhan, W.; Rao, X.; Zhao, H., Generalized finite difference method (GFDM) based analysis for subsurface flow problems in anisotropic formation, Eng Anal Bound Elem, 140, 48-58 (2022) ·Zbl 1521.76609
[56]Chen, S. Y.; Hsu, K. C.; Fan, C. M., Improvement of generalized finite difference method for stochastic subsurface flow modeling, J Comput Phys, 429, Article 110002 pp. (2021) ·Zbl 07500737
[57]Saucedo-Zendejo, F. R.; Reséndiz-Flores, E. O.; Kuhnert, J., Three-dimensional flow prediction in mould filling processes using a GFDM, Comput Part Mech, 6, 3, 411-425 (2019)
[58]Atluri, S. N.; Shen, S., The Meshless Local Petrov-Galerkin (MLPG) method: a simple & less-costly alternative to the finite element and boundary element methods, Comput Model Eng Sci, 3, 1, 11-52 (2002) ·Zbl 0996.65116
[59]Cheng, M.; Liu, G. R., A novel finite point method for flow simulation, Int J Numer Methods Fluids, 39, 12, 1161-1178 (2002) ·Zbl 1053.76056
[60]Li, P. W.; Fan, C. M.; Grabski, J. K., A meshless generalized finite difference method for solving shallow water equations with the flux limiter technique, Eng Anal Bound Elem, 131, 159-173 (2021) ·Zbl 1521.76556
[61]Rao, X., An upwind generalized finite difference method (GFDM) for meshless analysis of heat and mass transfer in porous media, Comp Part Mech (2022)
[62]Rao, X.; Liu, Y.; Zhao, H., An upwind generalized finite difference method for meshless solution of two-phase porous flow equations, Eng Anal Bound Elem, 137, 105-118 (2022) ·Zbl 1521.76577
[63]Biot, M. A., General theory of three-dimensional consolidation, J Appl Phys, 12, 2, 155-164 (1941) ·JFM 67.0837.01
[64]Rao, X., A novel meshless method based on the virtual construction of node control domains for porous flow problems (2022), arXiv preprint, arXiv:2206.05531
[65]Milewski, S., Meshless finite difference method with higher order approximation—applications in mechanics, Arch Comput Meth Eng, 19, 1, 1-49 (2012) ·Zbl 1354.74313
[66]Brandt, A., MacCormick, S., & Ruge, J. (1983). Algebraic multigrid (AMG) for automatic multigrid solution with application to geodetic computations.
[67]Ruge, J. W.; Stüben, K., Algebraic multigrid, Multigrid methods, 73-130 (1987), Society for Industrial and Applied Mathematics ·Zbl 0659.65094
[68]Saad, Y., ILUT: A dual threshold incomplete LU factorization, Numer Linear Algebr Appl, 1, 387-402 (1994) ·Zbl 0838.65026
[69]Benzi, M., Preconditioning techniques for large linear systems: a survey, J Comput Phys, 182, 418-477 (2002) ·Zbl 1015.65018
[70]Saad, Y.; Schultz, M. H., GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J Sci Stat Comput, 7, 856-869 (1986) ·Zbl 0599.65018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp