[1] | Amir, Gideon, Probability distribution of the free energy of the continuum directed random polymer in \(1+1\) dimensions, Comm. Pure Appl. Math., 466-537 (2011) ·Zbl 1222.82070 ·doi:10.1002/cpa.20347 |
[2] | Bertini, L., Derivation of Cahn-Hilliard equations from Ginzburg-Landau models, J. Statist. Phys., 365-381 (1997) ·Zbl 0924.60065 ·doi:10.1007/BF02508476 |
[3] | Bertini, Lorenzo, Stochastic Burgers and KPZ equations from particle systems, Comm. Math. Phys., 571-607 (1997) ·Zbl 0874.60059 ·doi:10.1007/s002200050044 |
[4] | Borodin, Alexei, Height fluctuations for the stationary KPZ equation, Math. Phys. Anal. Geom., Art. 20, 95 pp. (2015) ·Zbl 1332.82068 ·doi:10.1007/s11040-015-9189-2 |
[5] | Calabrese, Pasquale, Interaction quench in a Lieb-Liniger model and the KPZ equation with flat initial conditions, J. Stat. Mech. Theory Exp., P05004, 19 pp. (2014) ·Zbl 1457.82207 ·doi:10.1088/1742-5468/2014/05/p05004 |
[6] | Corwin, Ivan, Transversal fluctuations of the ASEP, stochastic six vertex model, and Hall-Littlewood Gibbsian line ensembles, Comm. Math. Phys., 435-501 (2018) ·Zbl 1401.60176 ·doi:10.1007/s00220-018-3139-3 |
[7] | Corwin, Ivan, Brownian Gibbs property for Airy line ensembles, Invent. Math., 441-508 (2014) ·Zbl 1459.82117 ·doi:10.1007/s00222-013-0462-3 |
[8] | Corwin, Ivan, KPZ line ensemble, Probab. Theory Related Fields, 67-185 (2016) ·Zbl 1357.82040 ·doi:10.1007/s00440-015-0651-7 |
[9] | Corwin, Ivan, Crossover distributions at the edge of the rarefaction fan, Ann. Probab., 1243-1314 (2013) ·Zbl 1285.82034 ·doi:10.1214/11-AOP725 |
[10] | D. Dauvergne, J. Ortmann, and B. Vir\'ag, The directed landscape, arXiv:1812.00309 (2018). |
[11] | Dimitrov, Evgeni, Characterization of Brownian Gibbsian line ensembles, Ann. Probab., 2477-2529 (2021) ·Zbl 1479.82045 ·doi:10.1214/21-aop1513 |
[12] | Dotsenko, Victor, Distribution function of the endpoint fluctuations of one-dimensional directed polymers in a random potential, J. Stat. Mech. Theory Exp., P02012, 20 pp. (2013) ·Zbl 1456.82495 ·doi:10.1088/1742-5468/2013/02/p02012 |
[13] | Forster, D., Large-distance and long-time properties of a randomly stirred fluid, Phys. Rev. A (3), 732-749 (1977) ·doi:10.1103/PhysRevA.16.732 |
[14] | Gubinelli, Massimiliano, KPZ reloaded, Comm. Math. Phys., 165-269 (2017) ·Zbl 1388.60110 ·doi:10.1007/s00220-016-2788-3 |
[15] | Hairer, M., XVIIth International Congress on Mathematical Physics. Solving the KPZ equation, 419 pp. (2014), World Sci. Publ., Hackensack, NJ |
[16] | Helfer, Joseph, A note on maxima in random walks, Electron. J. Combin., Paper 1.17, 10 pp. (2016) ·Zbl 1331.60077 |
[17] | Imamura, T., Fluctuations of the one-dimensional polynuclear growth model with external sources, Nuclear Phys. B, 503-544 (2004) ·Zbl 1123.82352 ·doi:10.1016/j.nuclphysb.2004.07.030 |
[18] | Imamura, Takashi, Replica approach to the KPZ equation with the half Brownian motion initial condition, J. Phys. A, 385001, 29 pp. (2011) ·Zbl 1227.82057 ·doi:10.1088/1751-8113/44/38/385001 |
[19] | M. Kardar, G. Parisi, and Y.-C. Zhang, Dynamic scaling of growing interfaces, Phys. Rev. Lett. 56 (1986), 889-892. ·Zbl 1101.82329 |
[20] | Matetski, Konstantin, The KPZ fixed point, Acta Math., 115-203 (2021) ·Zbl 1505.82041 ·doi:10.4310/acta.2021.v227.n1.a3 |
[21] | Nica, Mihai, One-sided reflected Brownian motions and the KPZ fixed point, Forum Math. Sigma, Paper No. e63, 16 pp. (2020) ·Zbl 1455.60131 ·doi:10.1017/fms.2020.56 |
[22] | Ortmann, Janosch, A Pfaffian representation for flat ASEP, Comm. Pure Appl. Math., 3-89 (2017) ·Zbl 1366.82024 ·doi:10.1002/cpa.21644 |
[23] | Pr\"{a}hofer, Michael, Scale invariance of the PNG droplet and the Airy process, J. Statist. Phys., 1071-1106 (2002) ·Zbl 1025.82010 ·doi:10.1023/A:1019791415147 |
[24] | Quastel, Jeremy, Current developments in mathematics, 2011. Introduction to KPZ, 125-194 (2012), Int. Press, Somerville, MA ·Zbl 1316.60019 |
[25] | Roy, Dipankar, One-dimensional Kardar-Parisi-Zhang and Kuramoto-Sivashinsky universality class: limit distributions, Phys. Rev. E, 030103(R), 6 pp. (2020) |
[26] | Sasamoto, Tomohiro, Exact height distributions for the KPZ equation with narrow wedge initial condition, Nuclear Phys. B, 523-542 (2010) ·Zbl 1204.35137 ·doi:10.1016/j.nuclphysb.2010.03.026 |
[27] | Savu, Anamaria, Hydrodynamic scaling limit of continuum solid-on-solid model, J. Appl. Math., Art. ID 69101, 37 pp. (2006) ·Zbl 1141.82324 ·doi:10.1155/JAM/2006/69101 |
[28] | Tracy, Craig A., Asymptotics in ASEP with step initial condition, Comm. Math. Phys., 129-154 (2009) ·Zbl 1184.60036 ·doi:10.1007/s00220-009-0761-0 |
[29] | Tracy, Craig A., On ASEP with step Bernoulli initial condition, J. Stat. Phys., 825-838 (2009) ·Zbl 1188.82043 ·doi:10.1007/s10955-009-9867-1 |
[30] | Tracy, Craig A., Formulas for ASEP with two-sided Bernoulli initial condition, J. Stat. Phys., 619-634 (2010) ·Zbl 1197.82079 ·doi:10.1007/s10955-010-0013-x |
[31] | van Beijeren, H., Excess noise for driven diffusive systems, Phys. Rev. Lett., 2026-2029 (1985) ·doi:10.1103/PhysRevLett.54.2026 |
[32] | Varadhan, S. R. S., Self-diffusion of a tagged particle in equilibrium for asymmetric mean zero random walk with simple exclusion, Ann. Inst. H. Poincar\'{e} Probab. Statist., 273-285 (1995) ·Zbl 0816.60093 |
[33] | Revuz, Daniel, Continuous martingales and Brownian motion, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], xiv+602 pp. (1999), Springer-Verlag, Berlin ·Zbl 0917.60006 ·doi:10.1007/978-3-662-06400-9 |
[34] | B. Vir\'ag, The heat and the landscape I, 2008.07241, 2020. |
[35] | X. Wu, Tightness and local fluctuation estimates for the KPZ line ensemble, 2106.08051, 2021. |
[36] | Xu, Lin, Diffusive scaling limit for mean zero asymmetric simple exclusion processes, 60 pp. (1993), ProQuest LLC, Ann Arbor, MI |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.