Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Convergence of exclusion processes and the KPZ equation to the KPZ fixed point.(English)Zbl 1520.60063

The Kardar-Parisi-Zhang (KPZ) equation in one-dimension is \[\partial_{t}h=\lambda (\partial_{x}h)+\nu \partial_{x}^{2}h+\sqrt{D}\xi,\]where \(\xi(x,t)\) is the white noise on \(x\in\mathbb{R}\) and \(t\geq 0\). This model encapsulates a type of universality that has been gradually unveiled, and it is called the KPZ universality. This phenomenon had been studied for several models, in particular for some particle systems; one well known is the so-called TASEP (totally asymmetric simple exclusion process).
The TASEP model are particles in one-dimension such that their interaction (they resemble cars in one street lane pushing each other to move forward) creates a variable to growth, and the fluctation of such variable (after some scaling) converges to an object which may be calledKPZ fixed point.
In this article the authors prove that the solution of the KPZ equation, a real-valued function \(h(x,t)\), is such that \[\lim_{\delta\to 0}\delta h(x/\delta^{2}, t/\delta^{3} ) \]is indeed the KPZ fixed point; this is called the \(1:2:3\) scaling, which arises in this type of limit theorems. Of course, they use the fact that for such an equation it was previously proved the existence of its solution.
Moreover, the authors also extend the convergence of other particle systems to the KPZ fixed point, such as the ASEP (asymmetric simple exclusion process) and the AEP (finite range asymmetric exclusion processes), which are more general versions of the TASEP model. A delicate issue is about the initial conditions of the models; it becomes difficult to prove the results for very general initial data, nevertheless the authors cover several situations. One important tool to carry out the proofs are the so-called Dirichlet forms to deal with the generator of the Markov processes.

MSC:

60K35 Interacting random processes; statistical mechanics type models; percolation theory
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
82C24 Interface problems; diffusion-limited aggregation in time-dependent statistical mechanics

Cite

References:

[1]Amir, Gideon, Probability distribution of the free energy of the continuum directed random polymer in \(1+1\) dimensions, Comm. Pure Appl. Math., 466-537 (2011) ·Zbl 1222.82070 ·doi:10.1002/cpa.20347
[2]Bertini, L., Derivation of Cahn-Hilliard equations from Ginzburg-Landau models, J. Statist. Phys., 365-381 (1997) ·Zbl 0924.60065 ·doi:10.1007/BF02508476
[3]Bertini, Lorenzo, Stochastic Burgers and KPZ equations from particle systems, Comm. Math. Phys., 571-607 (1997) ·Zbl 0874.60059 ·doi:10.1007/s002200050044
[4]Borodin, Alexei, Height fluctuations for the stationary KPZ equation, Math. Phys. Anal. Geom., Art. 20, 95 pp. (2015) ·Zbl 1332.82068 ·doi:10.1007/s11040-015-9189-2
[5]Calabrese, Pasquale, Interaction quench in a Lieb-Liniger model and the KPZ equation with flat initial conditions, J. Stat. Mech. Theory Exp., P05004, 19 pp. (2014) ·Zbl 1457.82207 ·doi:10.1088/1742-5468/2014/05/p05004
[6]Corwin, Ivan, Transversal fluctuations of the ASEP, stochastic six vertex model, and Hall-Littlewood Gibbsian line ensembles, Comm. Math. Phys., 435-501 (2018) ·Zbl 1401.60176 ·doi:10.1007/s00220-018-3139-3
[7]Corwin, Ivan, Brownian Gibbs property for Airy line ensembles, Invent. Math., 441-508 (2014) ·Zbl 1459.82117 ·doi:10.1007/s00222-013-0462-3
[8]Corwin, Ivan, KPZ line ensemble, Probab. Theory Related Fields, 67-185 (2016) ·Zbl 1357.82040 ·doi:10.1007/s00440-015-0651-7
[9]Corwin, Ivan, Crossover distributions at the edge of the rarefaction fan, Ann. Probab., 1243-1314 (2013) ·Zbl 1285.82034 ·doi:10.1214/11-AOP725
[10]D. Dauvergne, J. Ortmann, and B. Vir\'ag, The directed landscape, arXiv:1812.00309 (2018).
[11]Dimitrov, Evgeni, Characterization of Brownian Gibbsian line ensembles, Ann. Probab., 2477-2529 (2021) ·Zbl 1479.82045 ·doi:10.1214/21-aop1513
[12]Dotsenko, Victor, Distribution function of the endpoint fluctuations of one-dimensional directed polymers in a random potential, J. Stat. Mech. Theory Exp., P02012, 20 pp. (2013) ·Zbl 1456.82495 ·doi:10.1088/1742-5468/2013/02/p02012
[13]Forster, D., Large-distance and long-time properties of a randomly stirred fluid, Phys. Rev. A (3), 732-749 (1977) ·doi:10.1103/PhysRevA.16.732
[14]Gubinelli, Massimiliano, KPZ reloaded, Comm. Math. Phys., 165-269 (2017) ·Zbl 1388.60110 ·doi:10.1007/s00220-016-2788-3
[15]Hairer, M., XVIIth International Congress on Mathematical Physics. Solving the KPZ equation, 419 pp. (2014), World Sci. Publ., Hackensack, NJ
[16]Helfer, Joseph, A note on maxima in random walks, Electron. J. Combin., Paper 1.17, 10 pp. (2016) ·Zbl 1331.60077
[17]Imamura, T., Fluctuations of the one-dimensional polynuclear growth model with external sources, Nuclear Phys. B, 503-544 (2004) ·Zbl 1123.82352 ·doi:10.1016/j.nuclphysb.2004.07.030
[18]Imamura, Takashi, Replica approach to the KPZ equation with the half Brownian motion initial condition, J. Phys. A, 385001, 29 pp. (2011) ·Zbl 1227.82057 ·doi:10.1088/1751-8113/44/38/385001
[19]M. Kardar, G. Parisi, and Y.-C. Zhang, Dynamic scaling of growing interfaces, Phys. Rev. Lett. 56 (1986), 889-892. ·Zbl 1101.82329
[20]Matetski, Konstantin, The KPZ fixed point, Acta Math., 115-203 (2021) ·Zbl 1505.82041 ·doi:10.4310/acta.2021.v227.n1.a3
[21]Nica, Mihai, One-sided reflected Brownian motions and the KPZ fixed point, Forum Math. Sigma, Paper No. e63, 16 pp. (2020) ·Zbl 1455.60131 ·doi:10.1017/fms.2020.56
[22]Ortmann, Janosch, A Pfaffian representation for flat ASEP, Comm. Pure Appl. Math., 3-89 (2017) ·Zbl 1366.82024 ·doi:10.1002/cpa.21644
[23]Pr\"{a}hofer, Michael, Scale invariance of the PNG droplet and the Airy process, J. Statist. Phys., 1071-1106 (2002) ·Zbl 1025.82010 ·doi:10.1023/A:1019791415147
[24]Quastel, Jeremy, Current developments in mathematics, 2011. Introduction to KPZ, 125-194 (2012), Int. Press, Somerville, MA ·Zbl 1316.60019
[25]Roy, Dipankar, One-dimensional Kardar-Parisi-Zhang and Kuramoto-Sivashinsky universality class: limit distributions, Phys. Rev. E, 030103(R), 6 pp. (2020)
[26]Sasamoto, Tomohiro, Exact height distributions for the KPZ equation with narrow wedge initial condition, Nuclear Phys. B, 523-542 (2010) ·Zbl 1204.35137 ·doi:10.1016/j.nuclphysb.2010.03.026
[27]Savu, Anamaria, Hydrodynamic scaling limit of continuum solid-on-solid model, J. Appl. Math., Art. ID 69101, 37 pp. (2006) ·Zbl 1141.82324 ·doi:10.1155/JAM/2006/69101
[28]Tracy, Craig A., Asymptotics in ASEP with step initial condition, Comm. Math. Phys., 129-154 (2009) ·Zbl 1184.60036 ·doi:10.1007/s00220-009-0761-0
[29]Tracy, Craig A., On ASEP with step Bernoulli initial condition, J. Stat. Phys., 825-838 (2009) ·Zbl 1188.82043 ·doi:10.1007/s10955-009-9867-1
[30]Tracy, Craig A., Formulas for ASEP with two-sided Bernoulli initial condition, J. Stat. Phys., 619-634 (2010) ·Zbl 1197.82079 ·doi:10.1007/s10955-010-0013-x
[31]van Beijeren, H., Excess noise for driven diffusive systems, Phys. Rev. Lett., 2026-2029 (1985) ·doi:10.1103/PhysRevLett.54.2026
[32]Varadhan, S. R. S., Self-diffusion of a tagged particle in equilibrium for asymmetric mean zero random walk with simple exclusion, Ann. Inst. H. Poincar\'{e} Probab. Statist., 273-285 (1995) ·Zbl 0816.60093
[33]Revuz, Daniel, Continuous martingales and Brownian motion, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], xiv+602 pp. (1999), Springer-Verlag, Berlin ·Zbl 0917.60006 ·doi:10.1007/978-3-662-06400-9
[34]B. Vir\'ag, The heat and the landscape I, 2008.07241, 2020.
[35]X. Wu, Tightness and local fluctuation estimates for the KPZ line ensemble, 2106.08051, 2021.
[36]Xu, Lin, Diffusive scaling limit for mean zero asymmetric simple exclusion processes, 60 pp. (1993), ProQuest LLC, Ann Arbor, MI
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp