Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Elements of spin Hurwitz theory: closed algebraic formulas, blobbed topological recursion, and a proof of the Giacchetto-Kramer-Lewański conjecture.(English)Zbl 1519.81282

Summary: In this paper, we discuss the properties of the generating functions of spin Hurwitz numbers. In particular, for spin Hurwitz numbers with arbitrary ramification profiles, we construct the weighed sums which are given by Orlov’s hypergeometric solutions of the 2-component BKP hierarchy. We derive the closed algebraic formulas for the correlation functions associated with these tau-functions, and under reasonable analytical assumptions we prove the loop equations (the blobbed topological recursion). Finally, we prove a version of topological recursion for the spin Hurwitz numbers with the spin completed cycles (a generalized version of the Giacchetto-Kramer-Lewański conjecture).

MSC:

81R10 Infinite-dimensional groups and algebras motivated by physics, including Virasoro, Kac-Moody, \(W\)-algebras and other current algebras and their representations
14N10 Enumerative problems (combinatorial problems) in algebraic geometry
33C80 Connections of hypergeometric functions with groups and algebras, and related topics
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)

Cite

References:

[1]Alexandrov, A.; Chapuy, G.; Eynard, B.; Harnad, J., Weighted Hurwitz numbers and topological recursion an overview, J. Math. Phys., 59, 8 (2018) ·Zbl 1401.14147 ·doi:10.1063/1.5013201
[2]Alexandrov, A.; Chapuy, G.; Eynard, B.; Harnad, J., Weighted Hurwitz numbers and topological recursion, Comm. Math. Phys., 375, 1, 237-305 (2020) ·Zbl 1472.37078 ·doi:10.1007/s00220-020-03717-0
[3]Alexandrov, A.: Generalized Brézin-Gross-Witten tau-function as a hypergeometric solution of the BKP hierarchy. Adv. Math. 412:Paper No. 108809 (2023). doi:10.1016/j.aim.2022.108809 ·Zbl 1509.14105
[4]Bychkov, B.; Dunin-Barkowski, P.; Kazarian, M.; Shadrin, S., Topological recursion for kadomtsev-petviashvili tau functions of hypergeometric type (2020) ·Zbl 1458.05262 ·doi:10.48550/ARXIV.2012.14723
[5]Bychkov, B.; Dunin-Barkowski, P.; Kazarian, M.; Shadrin, S., Explicit closed algebraic formulas for Orlov-Scherbin \(n\)-point functions, J. Éc. Polytech. Math., 9, 1121-1158 (2022) ·Zbl 1504.37080 ·doi:10.5802/jep.202
[6]Borot, G.; Eynard, B.; Orantin, N., Abstract loop equations, topological recursion and new applications, Commun. Number Theory Phys., 9, 1, 51-187 (2015) ·Zbl 1329.14074 ·doi:10.4310/CNTP.2015.v9.n1.a2
[7]Borot, G.; Kramer, R.; Lewanski, D.; Popolitov, A.; Shadrin, S., Special cases of the orbifold version of Zvonkine’s \(r\)-ELSV formula, Michigan Math. J., 70, 2, 369-402 (2021) ·Zbl 1483.14092 ·doi:10.1307/mmj/1592877614
[8]Borot, G.; Shadrin, S., Blobbed topological recursion: properties and applications, Math. Proc. Camb. Philos. Soc., 162, 1, 39-87 (2017) ·Zbl 1396.14031 ·doi:10.1017/S0305004116000323
[9]Date, Etsuro, Jimbo, Michio, Kashiwara, Masaki, Miwa, Tetsuji: Transformation groups for soliton equations. IV. A new hierarchy of soliton equations of KP-type. Phys. D 4(3):343-365 (1981/82). doi:10.1016/0167-2789(82)90041-0 ·Zbl 0571.35100
[10]Eynard, B.; Orantin, N., Invariants of algebraic curves and topological expansion, Commun. Number Theory Phys., 1, 2, 347-452 (2007) ·Zbl 1161.14026 ·doi:10.4310/CNTP.2007.v1.n2.a4
[11]Eskin, A.; Okounkov, A.; Pandharipande, R., The theta characteristic of a branched covering, Adv. Math., 217, 3, 873-888 (2008) ·Zbl 1157.14014 ·doi:10.1016/j.aim.2006.08.001
[12]Giacchetto, A., Kramer, R., Lewański, D.: A new spin on Hurwitz theory and ELSV via theta characteristics (2021). doi:10.48550/ARXIV.2104.05697
[13]Guay-Paquet, Mathieu, Harnad, J.: Generating functions for weighted Hurwitz numbers. J. Math. Phys. 58(8):083503, 28 (2017). doi:10.1063/1.4996574 ·Zbl 1369.05013
[14]Gunningham, S., Spin Hurwitz numbers and topological quantum field theory, Geom. Topol., 20, 4, 1859-1907 (2016) ·Zbl 1347.81070 ·doi:10.2140/gt.2016.20.1859
[15]Jimbo, M.; Miwa, T., Solitons and infinite-dimensional Lie algebras, Publ. Res. Inst. Math. Sci., 19, 3, 943-1001 (1983) ·Zbl 0557.35091 ·doi:10.2977/prims/1195182017
[16]Lee, J., A note on Gunningham’s formula, Bull. Aust. Math. Soc., 98, 3, 389-401 (2018) ·Zbl 1471.14115 ·doi:10.1017/S0004972718000618
[17]Lee, J., A square root of Hurwitz numbers, Manuscripta Math., 162, 1-2, 99-113 (2020) ·Zbl 1439.14117 ·doi:10.1007/s00229-019-01113-0
[18]I. G. Macdonald. Symmetric functions and Hall polynomials. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, second edition: With contributions by A. Oxford Science Publications, Zelevinsky (1995) ·Zbl 0824.05059
[19]Mironov, A., Morozov, A., Natanzon, S.: Cut-and-join structure and integrability for spin Hurwitz numbers. European Physical Journal C, 80(2):97, February (2020). arXiv:1904.11458. doi:10.1140/epjc/s10052-020-7650-2
[20]Orlov, AY, Hypergeometric functions associated with Schur \(Q\)-polynomials, and the BKP equation, Teoret. Mat. Fiz., 137, 2, 253-270 (2003) ·Zbl 1178.33015 ·doi:10.1023/A:1027370004436
[21]van de Leur, J., The Adler-Shiota-van Moerbeke formula for the BKP hierarchy, J. Math. Phys., 36, 9, 4940-4951 (1995) ·Zbl 0844.35109 ·doi:10.1063/1.531352
[22]You, Y.: Polynomial solutions of the BKP hierarchy and projective representations of symmetric groups. In Infinite-dimensional Lie algebras and groups (Luminy-Marseille, 1988), volume 7 of Adv. Ser. Math. Phys., pages 449-464. World Sci. Publ., Teaneck, NJ (1989) ·Zbl 0744.35052
[23]Zograf, P., Enumeration of Grothendieck’s dessins and KP hierarchy, Int. Math. Res. Not. IMRN, 24, 13533-13544 (2015) ·Zbl 1397.11116 ·doi:10.1093/imrn/rnv077
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp