[1] | Alexandrov, A.; Chapuy, G.; Eynard, B.; Harnad, J., Weighted Hurwitz numbers and topological recursion an overview, J. Math. Phys., 59, 8 (2018) ·Zbl 1401.14147 ·doi:10.1063/1.5013201 |
[2] | Alexandrov, A.; Chapuy, G.; Eynard, B.; Harnad, J., Weighted Hurwitz numbers and topological recursion, Comm. Math. Phys., 375, 1, 237-305 (2020) ·Zbl 1472.37078 ·doi:10.1007/s00220-020-03717-0 |
[3] | Alexandrov, A.: Generalized Brézin-Gross-Witten tau-function as a hypergeometric solution of the BKP hierarchy. Adv. Math. 412:Paper No. 108809 (2023). doi:10.1016/j.aim.2022.108809 ·Zbl 1509.14105 |
[4] | Bychkov, B.; Dunin-Barkowski, P.; Kazarian, M.; Shadrin, S., Topological recursion for kadomtsev-petviashvili tau functions of hypergeometric type (2020) ·Zbl 1458.05262 ·doi:10.48550/ARXIV.2012.14723 |
[5] | Bychkov, B.; Dunin-Barkowski, P.; Kazarian, M.; Shadrin, S., Explicit closed algebraic formulas for Orlov-Scherbin \(n\)-point functions, J. Éc. Polytech. Math., 9, 1121-1158 (2022) ·Zbl 1504.37080 ·doi:10.5802/jep.202 |
[6] | Borot, G.; Eynard, B.; Orantin, N., Abstract loop equations, topological recursion and new applications, Commun. Number Theory Phys., 9, 1, 51-187 (2015) ·Zbl 1329.14074 ·doi:10.4310/CNTP.2015.v9.n1.a2 |
[7] | Borot, G.; Kramer, R.; Lewanski, D.; Popolitov, A.; Shadrin, S., Special cases of the orbifold version of Zvonkine’s \(r\)-ELSV formula, Michigan Math. J., 70, 2, 369-402 (2021) ·Zbl 1483.14092 ·doi:10.1307/mmj/1592877614 |
[8] | Borot, G.; Shadrin, S., Blobbed topological recursion: properties and applications, Math. Proc. Camb. Philos. Soc., 162, 1, 39-87 (2017) ·Zbl 1396.14031 ·doi:10.1017/S0305004116000323 |
[9] | Date, Etsuro, Jimbo, Michio, Kashiwara, Masaki, Miwa, Tetsuji: Transformation groups for soliton equations. IV. A new hierarchy of soliton equations of KP-type. Phys. D 4(3):343-365 (1981/82). doi:10.1016/0167-2789(82)90041-0 ·Zbl 0571.35100 |
[10] | Eynard, B.; Orantin, N., Invariants of algebraic curves and topological expansion, Commun. Number Theory Phys., 1, 2, 347-452 (2007) ·Zbl 1161.14026 ·doi:10.4310/CNTP.2007.v1.n2.a4 |
[11] | Eskin, A.; Okounkov, A.; Pandharipande, R., The theta characteristic of a branched covering, Adv. Math., 217, 3, 873-888 (2008) ·Zbl 1157.14014 ·doi:10.1016/j.aim.2006.08.001 |
[12] | Giacchetto, A., Kramer, R., Lewański, D.: A new spin on Hurwitz theory and ELSV via theta characteristics (2021). doi:10.48550/ARXIV.2104.05697 |
[13] | Guay-Paquet, Mathieu, Harnad, J.: Generating functions for weighted Hurwitz numbers. J. Math. Phys. 58(8):083503, 28 (2017). doi:10.1063/1.4996574 ·Zbl 1369.05013 |
[14] | Gunningham, S., Spin Hurwitz numbers and topological quantum field theory, Geom. Topol., 20, 4, 1859-1907 (2016) ·Zbl 1347.81070 ·doi:10.2140/gt.2016.20.1859 |
[15] | Jimbo, M.; Miwa, T., Solitons and infinite-dimensional Lie algebras, Publ. Res. Inst. Math. Sci., 19, 3, 943-1001 (1983) ·Zbl 0557.35091 ·doi:10.2977/prims/1195182017 |
[16] | Lee, J., A note on Gunningham’s formula, Bull. Aust. Math. Soc., 98, 3, 389-401 (2018) ·Zbl 1471.14115 ·doi:10.1017/S0004972718000618 |
[17] | Lee, J., A square root of Hurwitz numbers, Manuscripta Math., 162, 1-2, 99-113 (2020) ·Zbl 1439.14117 ·doi:10.1007/s00229-019-01113-0 |
[18] | I. G. Macdonald. Symmetric functions and Hall polynomials. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, second edition: With contributions by A. Oxford Science Publications, Zelevinsky (1995) ·Zbl 0824.05059 |
[19] | Mironov, A., Morozov, A., Natanzon, S.: Cut-and-join structure and integrability for spin Hurwitz numbers. European Physical Journal C, 80(2):97, February (2020). arXiv:1904.11458. doi:10.1140/epjc/s10052-020-7650-2 |
[20] | Orlov, AY, Hypergeometric functions associated with Schur \(Q\)-polynomials, and the BKP equation, Teoret. Mat. Fiz., 137, 2, 253-270 (2003) ·Zbl 1178.33015 ·doi:10.1023/A:1027370004436 |
[21] | van de Leur, J., The Adler-Shiota-van Moerbeke formula for the BKP hierarchy, J. Math. Phys., 36, 9, 4940-4951 (1995) ·Zbl 0844.35109 ·doi:10.1063/1.531352 |
[22] | You, Y.: Polynomial solutions of the BKP hierarchy and projective representations of symmetric groups. In Infinite-dimensional Lie algebras and groups (Luminy-Marseille, 1988), volume 7 of Adv. Ser. Math. Phys., pages 449-464. World Sci. Publ., Teaneck, NJ (1989) ·Zbl 0744.35052 |
[23] | Zograf, P., Enumeration of Grothendieck’s dessins and KP hierarchy, Int. Math. Res. Not. IMRN, 24, 13533-13544 (2015) ·Zbl 1397.11116 ·doi:10.1093/imrn/rnv077 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.