Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

\(G\)-index, topological dynamics and the marker property.(English)Zbl 1518.37023

Let \(X\) be a compact metrizable space and \(T:X\to X\) be a homeomorphism without fixed points. Then for each prime \(p\) the group \(\mathbb{Z}_p=\mathbb{Z}/p\mathbb{Z}\) acts freely on the space \(P_p(X,T)\) of \(p\)-periodic points. The authors prove that the \(\mathbb{Z}_p\)-index \(\mathrm{ ind}_p(P_p(X,T))\) grows at most linearly in \(p\).
For the proof the authors introduce the spaces\[{\mathcal X}(N,\delta)=\left\{(x_n)_{n\in\mathbb{Z}}\in\big([0,1]^N\big)^{\mathbb{Z}}:|x_n-x_{n+1}|\ge\delta\right\},\qquad N\in\mathbb{N},\quad \delta>0,\]on which the shift map \(\sigma\) acts without fixed points. They show that \(\mathrm{ ind}_p\big(P_p({\mathcal X}(N,\delta))\big)\) grows at most linearly in \(p\), and they construct a continuous equivariant map \(X\to{\mathcal X}(N,\delta)\) for some \(N\in\mathbb{N}\), \(\delta>0\).
The spaces \({\mathcal X}(N,\delta)\) are also the main building blocks in the construction of a compact space \(X\) and a homeomorphism \(T\) on \(X\) without periodic points, and such that the dynamical system \((X,T)\) does not have the marker property (introduced in [Y. Gutman, Proc. Lond. Math. Soc. (3) 111, No. 4, 831–850 (2015;Zbl 1352.37017)]).
The paper concludes with some open problems concerning the marker property.

MSC:

37B30 Index theory for dynamical systems, Morse-Conley indices
37B05 Dynamical systems involving transformations and group actions with special properties (minimality, distality, proximality, expansivity, etc.)
37B02 Dynamics in general topological spaces

Citations:

Zbl 1352.37017

Cite

References:

[1]Gromov, M., Topological invariants of dynamical systems and spaces of holomorphic maps: I, Mathematical Physics, Analysis and Geometry, 2, 323-415 (1999) ·Zbl 1160.37322 ·doi:10.1023/A:1009841100168
[2]Gutman, Y., Mean dimension and Jaworski-type theorems, Proceedings of the London Mathematical Society, 111, 831-850 (2015) ·Zbl 1352.37017 ·doi:10.1112/plms/pdv043
[3]Gutman, Y., Embedding topological dynamical systems with periodic points in cubical shifts, Ergodic Theory and Dynamical System, 37, 512-538 (2017) ·Zbl 1435.37034 ·doi:10.1017/etds.2015.40
[4]Gutman, Y.; Lindenstrauss, E.; Tsukamoto, M., Mean dimension of ℤ^k-actions, Geometric and Functional Analysis, 26, 778-817 (2016) ·Zbl 1378.37056 ·doi:10.1007/s00039-016-0372-9
[5]Gutman, Y.; Qiao, Y.; Tsukamoto, M., Application of signal analysis to the embedding problem of ℤ^k-actions, Geometric and Functional Analysis, 29, 1440-1502 (2019) ·Zbl 1427.37013 ·doi:10.1007/s00039-019-00499-z
[6]Gutman, Y.; Tsukamoto, M., Embedding minimal dynamical systems into Hilbert cubes, Inventiones Mathematicae, 221, 113-166 (2020) ·Zbl 1444.37010 ·doi:10.1007/s00222-019-00942-w
[7]Lindenstrauss, E., Mean dimension, small entropy factors and an embedding theorem, Institut des Hautes Études Scientifiques. Publications Mathématiques, 89, 227-262 (1999) ·Zbl 0978.54027 ·doi:10.1007/BF02698858
[8]Lindenstrauss, E.; Tsukamoto, M., Double variational principle for mean dimension, Geometric and Functional Analysis, 29, 1048-1109 (2019) ·Zbl 1433.37025 ·doi:10.1007/s00039-019-00501-8
[9]Lindenstrauss, E.; Weiss, B., Mean topological dimension, Israel Journal of Mathematics, 115, 1-24 (2000) ·Zbl 0978.54026 ·doi:10.1007/BF02810577
[10]Matoušek, J., Using the Borsuk—Ulam Theorem (2003), Berlin: Universitext, Springer, Berlin ·Zbl 1016.05001
[11]R. Shi, Finite mean dimension and marker property, https://arxiv.org/abs/2102.12197.
[12]R. Shi and M. Tsukamoto, Divergent coindex sequence for dynamical systems, Journal of Topology and Analysis, to appear, https://arxiv.org/abs/2103.11654.
[13]M. Tsukamoto, Double variational principle for mean dimension with potential, Advances in Mathematics 361 (2020), Article no. 106935. ·Zbl 1436.37032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp