Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

The strong topology of \(\omega \)-plurisubharmonic functions.(English)Zbl 1518.32012

Summary: On a compact Kähler manifold \((X,\omega)\), given a model-type envelope \(\psi\in \operatorname{PSH}(X,\omega)\) (i.e., a singularity type) we prove that the Monge-Ampère operator is a homeomorphism between the set of \(\psi \)-relative finite energy potentials and the set of \(\psi \)-relative finite energy measures endowed with their strong topologies given as the coarsest refinements of the weak topologies such that the relative energies become continuous. Moreover, given a totally ordered family \(\mathcal{A}\) of model-type envelopes with positive total mass representing different singularity types, the sets \(X_{\mathcal{A}}\) and \(Y_{\mathcal{A}} \), given as the union of all \(\psi \)-relative finite energy potentials and of all \(\psi \)-relative finite energy measures with varying \(\psi\in \bar{\mathcal{A}}\), respectively, have two natural strong topologies which extend the strong topologies on each component of the unions. We show that the Monge-Ampère operator produces a homeomorphism between \(X_{\mathcal{A}}\) and \(Y_{\mathcal{A}} \). As an application we also prove the strong stability of a sequence of solutions of complex Monge-Ampère equations when the measures have uniformly \(L^p\)-bounded densities for \(p>1\) and the prescribed singularities are totally ordered.

MSC:

32W20 Complex Monge-Ampère operators
32J27 Compact Kähler manifolds: generalizations, classification
32U05 Plurisubharmonic functions and generalizations

Cite

References:

[1]Aubin, Thierry, Réduction du cas positif de l’équation de Monge-Ampère sur les variétés kählériennes compactes à la démonstration d’une inégalité, J. Funct. Anal., 57, 2, 143, 1984; Aubin, Thierry, Réduction du cas positif de l’équation de Monge-Ampère sur les variétés kählériennes compactes à la démonstration d’une inégalité, J. Funct. Anal., 57, 2, 143, 1984 ·Zbl 0538.53063 ·doi:10.1016/0022-1236(84)90093-4
[2]Berman, Robert; Boucksom, Sébastien, Growth of balls of holomorphic sections and energy at equilibrium, Invent. Math., 181, 2, 337, 2010; Berman, Robert; Boucksom, Sébastien, Growth of balls of holomorphic sections and energy at equilibrium, Invent. Math., 181, 2, 337, 2010 ·Zbl 1208.32020 ·doi:10.1007/s00222-010-0248-9
[3]Berman, Robert J.; Boucksom, Sébastien; Guedj, Vincent; Zeriahi, Ahmed, A variational approach to complex Monge-Ampère equations, Publ. Math. Inst. Hautes Études Sci., 117, 179, 2013; Berman, Robert J.; Boucksom, Sébastien; Guedj, Vincent; Zeriahi, Ahmed, A variational approach to complex Monge-Ampère equations, Publ. Math. Inst. Hautes Études Sci., 117, 179, 2013 ·Zbl 1277.32049 ·doi:10.1007/s10240-012-0046-6
[4]Berman, Robert J.; Boucksom, Sebastien; Eyssidieux, Philippe; Guedj, Vincent; Zeriahi, Ahmed, Kähler-Einstein metrics and the Kähler-Ricci flow on log Fano varieties, J. Reine Angew. Math., 751, 27, 2019; Berman, Robert J.; Boucksom, Sebastien; Eyssidieux, Philippe; Guedj, Vincent; Zeriahi, Ahmed, Kähler-Einstein metrics and the Kähler-Ricci flow on log Fano varieties, J. Reine Angew. Math., 751, 27, 2019 ·Zbl 1430.14083 ·doi:10.1515/crelle-2016-0033
[5]Berman, Robert J.; Darvas, Tamás; Lu, Chinh H., Regularity of weak minimizers of the K-energy and applications to properness and K-stability, Ann. Sci. École Norm. Sup. (4), 53, 2, 267, 2020; Berman, Robert J.; Darvas, Tamás; Lu, Chinh H., Regularity of weak minimizers of the K-energy and applications to properness and K-stability, Ann. Sci. École Norm. Sup. (4), 53, 2, 267, 2020 ·Zbl 1452.32027 ·doi:10.24033/asens.2422
[6]Błocki, Zbigniew; Kołodziej, S., On regularization of plurisubharmonic functions on manifolds, Proc. Amer. Math. Soc., 135, 7, 2089, 2007; Błocki, Zbigniew; Kołodziej, S., On regularization of plurisubharmonic functions on manifolds, Proc. Amer. Math. Soc., 135, 7, 2089, 2007 ·Zbl 1116.32024 ·doi:10.1090/S0002-9939-07-08858-2
[7]Boucksom, Sébastien; Eyssidieux, Philippe; Guedj, Vincent; Zeriahi, Ahmed, Monge-Ampère equations in big cohomology classes, Acta Math., 205, 2, 199, 2010; Boucksom, Sébastien; Eyssidieux, Philippe; Guedj, Vincent; Zeriahi, Ahmed, Monge-Ampère equations in big cohomology classes, Acta Math., 205, 2, 199, 2010 ·Zbl 1213.32025 ·doi:10.1007/s11511-010-0054-7
[8]Cegrell, Urban, Pluricomplex energy, Acta Math., 180, 2, 187, 1998; Cegrell, Urban, Pluricomplex energy, Acta Math., 180, 2, 187, 1998 ·Zbl 0926.32042 ·doi:10.1007/BF02392899
[9]Chen, Xiuxiong; Cheng, Jingrui, On the constant scalar curvature Kähler metrics, I : A priori estimates, J. Amer. Math. Soc., 34, 4, 909, 2021; Chen, Xiuxiong; Cheng, Jingrui, On the constant scalar curvature Kähler metrics, I : A priori estimates, J. Amer. Math. Soc., 34, 4, 909, 2021 ·Zbl 1472.14042 ·doi:10.1090/jams/967
[10]Chen, Xiuxiong; Cheng, Jingrui, On the constant scalar curvature Kähler metrics, II : Existence results, J. Amer. Math. Soc., 34, 4, 937, 2021; Chen, Xiuxiong; Cheng, Jingrui, On the constant scalar curvature Kähler metrics, II : Existence results, J. Amer. Math. Soc., 34, 4, 937, 2021 ·Zbl 1477.14067 ·doi:10.1090/jams/966
[11]Darvas, Tamás, The Mabuchi geometry of finite energy classes, Adv. Math., 285, 182, 2015; Darvas, Tamás, The Mabuchi geometry of finite energy classes, Adv. Math., 285, 182, 2015 ·Zbl 1327.53093 ·doi:10.1016/j.aim.2015.08.005
[12]Darvas, Tamás; Rubinstein, Yanir A., Tian’s properness conjectures and Finsler geometry of the space of Kähler metrics, J. Amer. Math. Soc., 30, 2, 347, 2017; Darvas, Tamás; Rubinstein, Yanir A., Tian’s properness conjectures and Finsler geometry of the space of Kähler metrics, J. Amer. Math. Soc., 30, 2, 347, 2017 ·Zbl 1386.32021 ·doi:10.1090/jams/873
[13]Darvas, Tamás; Di Nezza, Eleonora; Lu, Chinh H., Monotonicity of nonpluripolar products and complex Monge-Ampère equations with prescribed singularity, Anal. PDE, 11, 8, 2049, 2018; Darvas, Tamás; Di Nezza, Eleonora; Lu, Chinh H., Monotonicity of nonpluripolar products and complex Monge-Ampère equations with prescribed singularity, Anal. PDE, 11, 8, 2049, 2018 ·Zbl 1396.32011 ·doi:10.2140/apde.2018.11.2049
[14]Darvas, Tamás; Di Nezza, Eleonora; Lu, Chinh H., Log-concavity of volume and complex Monge-Ampère equations with prescribed singularity, Math. Ann., 379, 1-2, 95, 2021; Darvas, Tamás; Di Nezza, Eleonora; Lu, Chinh H., Log-concavity of volume and complex Monge-Ampère equations with prescribed singularity, Math. Ann., 379, 1-2, 95, 2021 ·Zbl 1460.32087 ·doi:10.1007/s00208-019-01936-y
[15]Darvas, Tamás; Di Nezza, Eleonora; Lu, Hoang-Chinh, The metric geometry of singularity types, J. Reine Angew. Math., 771, 137, 2021; Darvas, Tamás; Di Nezza, Eleonora; Lu, Hoang-Chinh, The metric geometry of singularity types, J. Reine Angew. Math., 771, 137, 2021 ·Zbl 1503.32029 ·doi:10.1515/crelle-2020-0019
[16]Di Nezza, E.; Trapani, S., Monge-Ampère measures on contact sets, Math. Res. Lett., 28, 5, 1337, 2021; Di Nezza, E.; Trapani, S., Monge-Ampère measures on contact sets, Math. Res. Lett., 28, 5, 1337, 2021 ·Zbl 1505.32031 ·doi:10.4310/MRL.2021.v28.n5.a3
[17]Guedj, Vincent; Zeriahi, Ahmed, The weighted Monge-Ampère energy of quasiplurisubharmonic functions, J. Funct. Anal., 250, 2, 442, 2007; Guedj, Vincent; Zeriahi, Ahmed, The weighted Monge-Ampère energy of quasiplurisubharmonic functions, J. Funct. Anal., 250, 2, 442, 2007 ·Zbl 1143.32022 ·doi:10.1016/j.jfa.2007.04.018
[18]Guedj, Vincent; Zeriahi, Ahmed, Degenerate complex Monge-Ampère equations. EMS Tracts in Math., 26, 2017; Guedj, Vincent; Zeriahi, Ahmed, Degenerate complex Monge-Ampère equations. EMS Tracts in Math., 26, 2017 ·Zbl 1373.32001 ·doi:10.4171/167
[19]Kołodziej, S., The complex Monge-Ampère equation, Acta Math., 180, 1, 69, 1998; Kołodziej, S., The complex Monge-Ampère equation, Acta Math., 180, 1, 69, 1998 ·Zbl 0913.35043 ·doi:10.1007/BF02392879
[20]Mabuchi, Toshiki, K-energy maps integrating Futaki invariants, Tohoku Math. J. (2), 38, 4, 575, 1986; Mabuchi, Toshiki, K-energy maps integrating Futaki invariants, Tohoku Math. J. (2), 38, 4, 575, 1986 ·Zbl 0619.53040 ·doi:10.2748/tmj/1178228410
[21]Ross, Julius; Witt Nyström, David, Analytic test configurations and geodesic rays, J. Symplectic Geom., 12, 1, 125, 2014; Ross, Julius; Witt Nyström, David, Analytic test configurations and geodesic rays, J. Symplectic Geom., 12, 1, 125, 2014 ·Zbl 1300.32021 ·doi:10.4310/JSG.2014.v12.n1.a5
[22]Trusiani, Antonio, L1 metric geometry of potentials with prescribed singularities on compact Kähler manifolds, J. Geom. Anal., 32, 2, 2022; Trusiani, Antonio, L1 metric geometry of potentials with prescribed singularities on compact Kähler manifolds, J. Geom. Anal., 32, 2, 2022 ·Zbl 1487.32179 ·doi:10.1007/s12220-021-00779-x
[23]Witt Nyström, David, Monotonicity of non-pluripolar Monge-Ampère masses, Indiana Univ. Math. J., 68, 2, 579, 2019; Witt Nyström, David, Monotonicity of non-pluripolar Monge-Ampère masses, Indiana Univ. Math. J., 68, 2, 579, 2019 ·Zbl 1422.32041 ·doi:10.1512/iumj.2019.68.7630
[24]Yau, Shing Tung, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I, Comm. Pure Appl. Math., 31, 3, 339, 1978; Yau, Shing Tung, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I, Comm. Pure Appl. Math., 31, 3, 339, 1978 ·Zbl 0369.53059 ·doi:10.1002/cpa.3160310304
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp