[1] | Aubin, Thierry, Réduction du cas positif de l’équation de Monge-Ampère sur les variétés kählériennes compactes à la démonstration d’une inégalité, J. Funct. Anal., 57, 2, 143, 1984; Aubin, Thierry, Réduction du cas positif de l’équation de Monge-Ampère sur les variétés kählériennes compactes à la démonstration d’une inégalité, J. Funct. Anal., 57, 2, 143, 1984 ·Zbl 0538.53063 ·doi:10.1016/0022-1236(84)90093-4 |
[2] | Berman, Robert; Boucksom, Sébastien, Growth of balls of holomorphic sections and energy at equilibrium, Invent. Math., 181, 2, 337, 2010; Berman, Robert; Boucksom, Sébastien, Growth of balls of holomorphic sections and energy at equilibrium, Invent. Math., 181, 2, 337, 2010 ·Zbl 1208.32020 ·doi:10.1007/s00222-010-0248-9 |
[3] | Berman, Robert J.; Boucksom, Sébastien; Guedj, Vincent; Zeriahi, Ahmed, A variational approach to complex Monge-Ampère equations, Publ. Math. Inst. Hautes Études Sci., 117, 179, 2013; Berman, Robert J.; Boucksom, Sébastien; Guedj, Vincent; Zeriahi, Ahmed, A variational approach to complex Monge-Ampère equations, Publ. Math. Inst. Hautes Études Sci., 117, 179, 2013 ·Zbl 1277.32049 ·doi:10.1007/s10240-012-0046-6 |
[4] | Berman, Robert J.; Boucksom, Sebastien; Eyssidieux, Philippe; Guedj, Vincent; Zeriahi, Ahmed, Kähler-Einstein metrics and the Kähler-Ricci flow on log Fano varieties, J. Reine Angew. Math., 751, 27, 2019; Berman, Robert J.; Boucksom, Sebastien; Eyssidieux, Philippe; Guedj, Vincent; Zeriahi, Ahmed, Kähler-Einstein metrics and the Kähler-Ricci flow on log Fano varieties, J. Reine Angew. Math., 751, 27, 2019 ·Zbl 1430.14083 ·doi:10.1515/crelle-2016-0033 |
[5] | Berman, Robert J.; Darvas, Tamás; Lu, Chinh H., Regularity of weak minimizers of the K-energy and applications to properness and K-stability, Ann. Sci. École Norm. Sup. (4), 53, 2, 267, 2020; Berman, Robert J.; Darvas, Tamás; Lu, Chinh H., Regularity of weak minimizers of the K-energy and applications to properness and K-stability, Ann. Sci. École Norm. Sup. (4), 53, 2, 267, 2020 ·Zbl 1452.32027 ·doi:10.24033/asens.2422 |
[6] | Błocki, Zbigniew; Kołodziej, S., On regularization of plurisubharmonic functions on manifolds, Proc. Amer. Math. Soc., 135, 7, 2089, 2007; Błocki, Zbigniew; Kołodziej, S., On regularization of plurisubharmonic functions on manifolds, Proc. Amer. Math. Soc., 135, 7, 2089, 2007 ·Zbl 1116.32024 ·doi:10.1090/S0002-9939-07-08858-2 |
[7] | Boucksom, Sébastien; Eyssidieux, Philippe; Guedj, Vincent; Zeriahi, Ahmed, Monge-Ampère equations in big cohomology classes, Acta Math., 205, 2, 199, 2010; Boucksom, Sébastien; Eyssidieux, Philippe; Guedj, Vincent; Zeriahi, Ahmed, Monge-Ampère equations in big cohomology classes, Acta Math., 205, 2, 199, 2010 ·Zbl 1213.32025 ·doi:10.1007/s11511-010-0054-7 |
[8] | Cegrell, Urban, Pluricomplex energy, Acta Math., 180, 2, 187, 1998; Cegrell, Urban, Pluricomplex energy, Acta Math., 180, 2, 187, 1998 ·Zbl 0926.32042 ·doi:10.1007/BF02392899 |
[9] | Chen, Xiuxiong; Cheng, Jingrui, On the constant scalar curvature Kähler metrics, I : A priori estimates, J. Amer. Math. Soc., 34, 4, 909, 2021; Chen, Xiuxiong; Cheng, Jingrui, On the constant scalar curvature Kähler metrics, I : A priori estimates, J. Amer. Math. Soc., 34, 4, 909, 2021 ·Zbl 1472.14042 ·doi:10.1090/jams/967 |
[10] | Chen, Xiuxiong; Cheng, Jingrui, On the constant scalar curvature Kähler metrics, II : Existence results, J. Amer. Math. Soc., 34, 4, 937, 2021; Chen, Xiuxiong; Cheng, Jingrui, On the constant scalar curvature Kähler metrics, II : Existence results, J. Amer. Math. Soc., 34, 4, 937, 2021 ·Zbl 1477.14067 ·doi:10.1090/jams/966 |
[11] | Darvas, Tamás, The Mabuchi geometry of finite energy classes, Adv. Math., 285, 182, 2015; Darvas, Tamás, The Mabuchi geometry of finite energy classes, Adv. Math., 285, 182, 2015 ·Zbl 1327.53093 ·doi:10.1016/j.aim.2015.08.005 |
[12] | Darvas, Tamás; Rubinstein, Yanir A., Tian’s properness conjectures and Finsler geometry of the space of Kähler metrics, J. Amer. Math. Soc., 30, 2, 347, 2017; Darvas, Tamás; Rubinstein, Yanir A., Tian’s properness conjectures and Finsler geometry of the space of Kähler metrics, J. Amer. Math. Soc., 30, 2, 347, 2017 ·Zbl 1386.32021 ·doi:10.1090/jams/873 |
[13] | Darvas, Tamás; Di Nezza, Eleonora; Lu, Chinh H., Monotonicity of nonpluripolar products and complex Monge-Ampère equations with prescribed singularity, Anal. PDE, 11, 8, 2049, 2018; Darvas, Tamás; Di Nezza, Eleonora; Lu, Chinh H., Monotonicity of nonpluripolar products and complex Monge-Ampère equations with prescribed singularity, Anal. PDE, 11, 8, 2049, 2018 ·Zbl 1396.32011 ·doi:10.2140/apde.2018.11.2049 |
[14] | Darvas, Tamás; Di Nezza, Eleonora; Lu, Chinh H., Log-concavity of volume and complex Monge-Ampère equations with prescribed singularity, Math. Ann., 379, 1-2, 95, 2021; Darvas, Tamás; Di Nezza, Eleonora; Lu, Chinh H., Log-concavity of volume and complex Monge-Ampère equations with prescribed singularity, Math. Ann., 379, 1-2, 95, 2021 ·Zbl 1460.32087 ·doi:10.1007/s00208-019-01936-y |
[15] | Darvas, Tamás; Di Nezza, Eleonora; Lu, Hoang-Chinh, The metric geometry of singularity types, J. Reine Angew. Math., 771, 137, 2021; Darvas, Tamás; Di Nezza, Eleonora; Lu, Hoang-Chinh, The metric geometry of singularity types, J. Reine Angew. Math., 771, 137, 2021 ·Zbl 1503.32029 ·doi:10.1515/crelle-2020-0019 |
[16] | Di Nezza, E.; Trapani, S., Monge-Ampère measures on contact sets, Math. Res. Lett., 28, 5, 1337, 2021; Di Nezza, E.; Trapani, S., Monge-Ampère measures on contact sets, Math. Res. Lett., 28, 5, 1337, 2021 ·Zbl 1505.32031 ·doi:10.4310/MRL.2021.v28.n5.a3 |
[17] | Guedj, Vincent; Zeriahi, Ahmed, The weighted Monge-Ampère energy of quasiplurisubharmonic functions, J. Funct. Anal., 250, 2, 442, 2007; Guedj, Vincent; Zeriahi, Ahmed, The weighted Monge-Ampère energy of quasiplurisubharmonic functions, J. Funct. Anal., 250, 2, 442, 2007 ·Zbl 1143.32022 ·doi:10.1016/j.jfa.2007.04.018 |
[18] | Guedj, Vincent; Zeriahi, Ahmed, Degenerate complex Monge-Ampère equations. EMS Tracts in Math., 26, 2017; Guedj, Vincent; Zeriahi, Ahmed, Degenerate complex Monge-Ampère equations. EMS Tracts in Math., 26, 2017 ·Zbl 1373.32001 ·doi:10.4171/167 |
[19] | Kołodziej, S., The complex Monge-Ampère equation, Acta Math., 180, 1, 69, 1998; Kołodziej, S., The complex Monge-Ampère equation, Acta Math., 180, 1, 69, 1998 ·Zbl 0913.35043 ·doi:10.1007/BF02392879 |
[20] | Mabuchi, Toshiki, K-energy maps integrating Futaki invariants, Tohoku Math. J. (2), 38, 4, 575, 1986; Mabuchi, Toshiki, K-energy maps integrating Futaki invariants, Tohoku Math. J. (2), 38, 4, 575, 1986 ·Zbl 0619.53040 ·doi:10.2748/tmj/1178228410 |
[21] | Ross, Julius; Witt Nyström, David, Analytic test configurations and geodesic rays, J. Symplectic Geom., 12, 1, 125, 2014; Ross, Julius; Witt Nyström, David, Analytic test configurations and geodesic rays, J. Symplectic Geom., 12, 1, 125, 2014 ·Zbl 1300.32021 ·doi:10.4310/JSG.2014.v12.n1.a5 |
[22] | Trusiani, Antonio, L1 metric geometry of potentials with prescribed singularities on compact Kähler manifolds, J. Geom. Anal., 32, 2, 2022; Trusiani, Antonio, L1 metric geometry of potentials with prescribed singularities on compact Kähler manifolds, J. Geom. Anal., 32, 2, 2022 ·Zbl 1487.32179 ·doi:10.1007/s12220-021-00779-x |
[23] | Witt Nyström, David, Monotonicity of non-pluripolar Monge-Ampère masses, Indiana Univ. Math. J., 68, 2, 579, 2019; Witt Nyström, David, Monotonicity of non-pluripolar Monge-Ampère masses, Indiana Univ. Math. J., 68, 2, 579, 2019 ·Zbl 1422.32041 ·doi:10.1512/iumj.2019.68.7630 |
[24] | Yau, Shing Tung, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I, Comm. Pure Appl. Math., 31, 3, 339, 1978; Yau, Shing Tung, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I, Comm. Pure Appl. Math., 31, 3, 339, 1978 ·Zbl 0369.53059 ·doi:10.1002/cpa.3160310304 |