Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

The \(L^p\) boundedness of the wave operators for matrix Schrödinger equations.(English)Zbl 1517.47075

Summary: We prove that the wave operators for \(n \times n\) matrix Schrödinger equations on the half line, with general selfadjoint boundary condition, are bounded in the spaces \(L^p (\mathbb{R}^+, \mathbb{C}^n)\), \( 1 < p < \infty\), for slowly decaying selfadjoint matrix potentials \(V\) that satisfy the condition \(\int_0^{{\infty}} (1 + x) |V (x)| \,d x < {\infty}\). Moreover, assuming that \(\int_0^{{\infty}} (1 + x^\gamma) |V (x)|\,d x < {\infty}\), \(\gamma > \frac{5}{2}\), and that the scattering matrix is the identity at zero and infinite energy, we prove that the wave operators are bounded in \(L^1 (\mathbb{R}^+, \mathbb{C}^n)\) and in \(L^{{\infty}} (\mathbb{R}^+, \mathbb{C}^n)\). We also prove that the wave operators for \(n \times n\) matrix Schrödinger equations on the line are bounded in the spaces \(L^p (\mathbb{R}, \mathbb{C}^n)\), \(1 < p < {\infty}\), assuming that the perturbation consists of a point interaction at the origin and of a potential \(\mathcal{V}\) that satisfies the condition \(\int_{-\infty}^{\infty} (1+|x|)|\mathcal{V}(x)|\, dx<\infty\). Further, assuming that \(\int_{-\infty}^{\infty} (1+|x|^\gamma)|\mathcal{V}(x)| \,dx<\infty\), \(\gamma > \frac{5}{2}\), and that the scattering matrix is the identity at zero and infinite energy, we prove that the wave operators are bounded in \(L^1 (\mathbb{R}, \mathbb{C}^n)\) and in \(L^{{\infty}} (\mathbb{R}, \mathbb{C}^n)\). We obtain our results for \(n \times n\) matrix Schrödinger equations on the line from the results for \(2 n \times 2 n\) matrix Schrödinger equations on the half line.

MSC:

47B93 Operators arising in mathematical physics
47A40 Scattering theory of linear operators
81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis

Cite

References:

[1]R. A. Adams and J. J. F. Fournier, Sobolev spaces. Second edn., Pure and Applied Math-ematics (Amsterdam) 140, Elsevier/Academic Press, Amsterdam, 2003 Zbl 1098.46001 MR 2424078
[2]R. Weder 742
[3]Z. S. Agranovič and V. A. Marčenko, Reconstruction of the potential energy from the scattering matrix. Uspehi Mat. Nauk (N.S.) 12 (1957), no. 1(73), 143-145 (in Russian) MR 0086980 ·Zbl 0079.10904
[4]Z. S. Agranovič and V. A. Marčenko, Construction of tensor forces from scattering data. Dokl. Akad. Nauk SSSR (N.S.) 118 (1958), 1055-1058 (in Russian) Zbl 0087.29503 MR 0105279 ·Zbl 0087.29503
[5]Z. S. Agranovich and V. A. Marchenko, Re-establishment of the potential from the scat-tering matrix for a system of differential equations. Dokl. Akad. Nauk SSSR (N.S.) 113 (1957), 951-954 (in Russian) Zbl 0079.10903 MR 0089972 ·Zbl 0079.10903
[6]Z. S. Agranovich and V. A. Marchenko, The inverse problem of scattering theory. Gordon and Breach, New York and London, 1963 Zbl 0117.06003 MR 0162497 ·Zbl 0117.06003
[7]T. Aktosun, M. Klaus, and C. van der Mee, Small-energy asymptotics of the scattering matrix for the matrix Schrödinger equation on the line. J. Math. Phys. 42 (2001), no. 10, 4627-4652 Zbl 1017.81046 MR 1855088 ·Zbl 1017.81046
[8]T. Aktosun, M. Klaus, and R. Weder, Small-energy analysis for the self-adjoint matrix Schrödinger operator on the half line J. Math. Phys. 52 (2011), no. 10, article id. 102101 Zbl 1272.81048 MR 2894582 ·Zbl 1272.81048
[9]T. Aktosun and R. Weder, High-energy analysis and Levinson’s theorem for the selfadjoint matrix Schrödinger operator on the half line. J. Math. Phys. 54 (2013), no. 1, article id. 012108 Zbl 1280.81032 MR 3059872 ·Zbl 1280.81032
[10]T. Aktosun and R. Weder, Direct and inverse scattering for the matrix Schrödinger equa-tion. Appl. Math. Sci. 203, Springer, Cham, 2021 Zbl 1460.34004 MR 4181482
[11]G. Artbazar and K. Yajima, The L p -continuity of wave operators for one dimensional Schrödinger operators. J. Math. Sci. Univ. Tokyo 7 (2000), no. 2, 221-240 ·Zbl 0976.34071
[12]J. Behrndt and A. Luger, On the number of negative eigenvalues of the Laplacian on a metric graph. J. Phys. A 43 (2010), no. 47, article id. 474006 Zbl 1204.81076 MR 2738101 ·Zbl 1204.81076
[13]G. Berkolaiko and P. Kuchment, Introduction to quantum graphs. Math. Surv. Monogr. 186, American Mathematical Society, Providence, RI, 2013 Zbl 1318.81005 MR 3013208
[14]J. Boman and P. Kurasov, Symmetries of quantum graphs and the inverse scattering prob-lem. Adv. in Appl. Math. 35 (2005), no. 1, 58-70 Zbl 1072.81059 MR 2141505 ·Zbl 1072.81059
[15]K. Chadan and P. C. Sabatier, Inverse problems in quantum scattering theory. Second edn., Texts Monogr. Phys., Springer, New York, 1989 Zbl 0681.35088 MR 985100 ·Zbl 0681.35088
[16]S. Cuccagna, L p continuity of wave operators in Z. J. Math. Anal. Appl. 354 (2009), no. 2, 594-605 Zbl 1177.39027 MR 2515240 ·Zbl 1177.39027
[17]P. D’Ancona and L. Fanelli, L p -boundedness of the wave operator for the one dimensional Schrödinger operator. Comm. Math. Phys. 268 (2006), no. 2, 415-438 Zbl 1127.35053 MR 2259201 ·Zbl 1127.35053
[18]V. Duchêne, J. L. Marzuola, and M. I. Weinstein Wave operator bounds for one-dimen-sional Schrödinger operators with singular potentials and applications. J. Math. Phys. 52 (2011), no. 1, article id. 013505 Zbl 1314.81085 MR 2791127 ·Zbl 1314.81085
[19]L. D. Faddeev, The inverse problem in the quantum theory of scattering. Uspehi Mat. Nauk 14 (1959), no. 4 (88), 57-119; English translation in J. Math. Phys 4 (1963), 72-104 Zbl 0112.45101 MR 0110466 ·Zbl 0091.21902
[20]L. D. Faddeev, On a model of Friedrichs in the theory of perturbations of the continuous spectrum. Trudy Mat. Inst. Steklov 73 (1964), 292-313 (in Russian) Zbl 0148.12801 MR 0178362 ·Zbl 0148.12801
[21]L. Fanelli, Dispersive equations in quantum mechanics. Rend. Mat. Appl. (7) 28 (2008), no. 3-4, 237-384 Zbl 1178.35311 MR 2494940 ·Zbl 1178.35311
[22]I. M. Gel’fand and G. E. Shilov, Generalized functions. Vol. I: Properties and operations. Academic Press, New York and London, 1964 Zbl 0115.33101 MR 0166596 ·Zbl 0115.33101
[23]B. Gutkin and U. Smilansky, Can one hear the shape of a graph? J. Phys. A 34 (2001), no. 31, 6061-6068 Zbl 0981.05095 MR 1862642 ·Zbl 0981.05095
[24]M. S. Harmer, The matrix Schrödinger operator and Schrödinger operator on graphs. Ph.D. thesis, University of Auckland, Auckland, 2004.
[25]T. Kato, Perturbation theory for linear operators. Second edn., Grundlehren Math. Wiss. 132, Springer, Berlin etc., 1976 Zbl 0342.47009 MR 0407617 ·Zbl 0342.47009
[26]V. Kostrykin and R. Schrader, Kirchhoff’s rule for quantum wires. J. Phys. A 32 (1999), no. 4, 595-630 Zbl 0928.34066 MR 1671833 ·Zbl 0928.34066
[27]V. Kostrykin and R. Schrader, Kirchhoff’s rule for quantum wires. II. The inverse problem with possible applications to quantum computers. Fortschr. Phys. 48 (2000), no. 8, 703-716 Zbl 0977.81163 MR 1778728 ·Zbl 0977.81163
[28]M. G. Kreȋn, On the theory of accelerants and S -matrices of canonical differential systems. Dokl. Akad. Nauk SSSR (N.S.) 111 (1956), 1167-1170 (in Russian) Zbl 0075.27302 MR 0086978 ·Zbl 0075.27302
[29]P. Kuchment, Quantum graphs. I. Some basic structures. Waves Random Media 14 (2004), no. 1, S107-S128. Zbl 1063.81058 MR 2042548 ·Zbl 1063.81058
[30]P. Kuchment, Quantum graphs. II. Some spectral properties of quantum and combinatorial graphs. J. Phys. A 38 (2005), no. 22, 4887-4900 Zbl 1070.81062 MR 2148631 ·Zbl 1070.81062
[31]P. Kurasov and M. Nowaczyk, Inverse spectral problem for quantum graphs. J. Phys. A 38 (2005), no. 22, 4901-4915 Zbl 1070.81112 MR 2148632 ·Zbl 1070.81112
[32]P. Kurasov and M. Nowaczyk, Geometric properties of quantum graphs and vertex scat-tering matrices. Opuscula Math. 30 (2010), no. 3, 295-309 Zbl 1236.81098 MR 2669120 ·Zbl 1236.81098
[33]P. Kurasov and F. Stenberg, On the inverse scattering problem on branching graphs. J. Phys. A 35 (2002), no. 1, 101-121 Zbl 1012.81053 MR 1891815 ·Zbl 1012.81053
[34]L. D. Landau and E. M. Lifshitz, Quantum mechanics: non-relativistic theory. (Course of Theoretical Physics, Vol. 3.) Addison-Wesley Series in Advanced Physics, Pergamon Press, London and Paris, and Addison-Wesley, Reading, Mass., 1958 Zbl 0081.22207 MR 0093319 ·Zbl 0081.22207
[35]I. Naumkin and R. Weder, L p L p 0 estimates for matrix Schrödinger equations. J. Evol. Equ. 21 (2021), no. 1, 891-919 Zbl 1462.35106 MR 4238229 ·Zbl 1462.35106
[36]R. G. Newton, Connection between the S -matrix and the tensor force. Phys. Rev. (2) 100 (1955), 412-428 Zbl 0066.22503 MR 74640 ·Zbl 0066.22503
[37]M. Reed and B. Simon, Methods of modern mathematical physics. III. Academic Press, New York and London, 1979 Zbl 0405.47007 MR 529429 ·Zbl 0405.47007
[38]F. S. Rofe-Beketov and A. M. Kholkin, Spectral analysis of differential operators. World Sci. Monogr. Ser. Math. 7, World Scientific, Hackensack, NJ, 2005 Zbl 1090.47030 MR 2175241
[39]C. Sadosky, Interpolation of operators and singular integrals. Monographs and Textbooks in Pure and Applied Mathematics 53, Marcel Dekker, New York, 1979 Zbl 0422.42013 MR 551747 ·Zbl 0422.42013
[40]W. Schlag, Dispersive estimates for Schrödinger operators: a survey. In Mathematical aspects of nonlinear dispersive equations, pp. 255-285, Ann. of Math. Stud. 163, Prin-ceton Univ. Press, Princeton, NJ, 2007 Zbl 1143.35001 MR 2333215 ·Zbl 1143.35001
[41]E. M. Stein, Singular integrals and differentiability properties of functions. Princeton Math. Ser. 30, Princeton University Press, Princeton, N.J., 1970 Zbl 0207.13501 MR 0290095 ·Zbl 0207.13501
[42]R. Weder, The W k;p -continuity of the Schrödinger wave operators on the line. Comm. Math. Phys. 208 (1999), no. 2, 507-520 Zbl 0945.34070 MR 1729096 ·Zbl 0945.34070
[43]D. R. Yafaev, Mathematical scattering theory. General Theory. Transl. Math. Monogr. 105, American Mathematical Society, Providence, RI, 1992 Zbl 0761.47001 MR 1180965 ·Zbl 0761.47001
[44]K. Yajima, The L p boundedness of wave operators for Schrödinger operators with threshold singularities. 2021 arXiv:2008.07906v2 ·Zbl 1339.35203
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp