[1] | T. Araki, T. Takashima, and S. Watamura, Instantons in non(anti)commutative gauge theory via deformed ADHM construction, in: Noncommutative Geometry and Physics 2005, pages 253-260, World Scientific, 2007. ·Zbl 1136.81407 |
[2] | R. M. Cohn, Difference Algebra, Interscience Publishers, 1965. ·Zbl 0127.26402 |
[3] | A. Connes and M. Marcolli, Noncommutative Geometry, Quantum Fields and Motives, Amer. Math. Soc., 2007. |
[4] | A. Das and A. Mandal, Extensions, deformation and categorification of AssDer pairs, preprint, arXiv: 2002.11415. |
[5] | M. Doubek, M. Markl, and P. Zima, Deformation theory (lecture notes), Arch. Math. (Brno) 43 (2007), 333-371. ·Zbl 1199.13015 |
[6] | J. Freitag, W. Li, and T. Scanlon, Differential Chow varieties exist, J. Lond. Math. Soc. 95 (2017), 128-156. ·Zbl 1439.14027 |
[7] | M. Gerstenhaber, The cohomology structure of an associative ring, Ann. of Math. 78 (1963), 267-288. ·Zbl 0131.27302 |
[8] | M. Gerstenhaber, On the deformation of rings and algebras, Ann. of Math. 79 (1964), 59-103. ·Zbl 0123.03101 |
[9] | L. Guo and W. Keigher, On differential Rota-Baxter algebras, J. Pure Appl. Algebra 212 (2008), 522-540. ·Zbl 1185.16038 |
[10] | L. Guo and F. Li, Structure of Hochschild cohomology of path algebras and differential formulation of Euler’s polyhedron formula, Asian J. Math. 18 (2014), 545-572. ·Zbl 1322.16005 |
[11] | G. Hochschild, On the cohomology groups of an associative algebra. Ann. of Math. (2) 46 (1945), 58-67. ·Zbl 0063.02029 |
[12] | V. Kac and P. Cheung, Quantum Calculus, Springer-Verlag, 2002. ·Zbl 0986.05001 |
[13] | E. R. Kolchin, Differential Algebras and Algebraic Groups, Academic Press, 1973. ·Zbl 0264.12102 |
[14] | A. Lazarev and M. Movshev, On the cohomology and deformations of differential graded algebras, J. Pure Appl. Algebra 106 (1996), 141-151. ·Zbl 0853.16037 |
[15] | A. Levin, Difference Algebra, Springer, 2008. ·Zbl 1209.12003 |
[16] | X. Liu, L. Guo, and X. Guo, λ-differential operators and λ-differential modules for the Virasoro algebra, Linear and Multilinear Algebra 67 (2019), 1308-1324. ·Zbl 1467.17003 |
[17] | L.-J. Loday, On the operad of associative algebras with derivation, Georgian Math. J. 17 (2010), 347-372. ·Zbl 1237.18007 |
[18] | J.-L. Loday and B. Vallette, Algebraic Operads, Springer, 2012. ·Zbl 1260.18001 |
[19] | A. R. Magid, Lectures on Differential Galois Theory, Amer. Math. Soc., 1994. ·Zbl 0855.12001 |
[20] | M. Markl, S. Shnider, and J. D. Stasheff, Operads in Algebra, Topology and Physics, Amer. Math. Soc., 2002. ·Zbl 1017.18001 |
[21] | A. Medvedev and T. Scanlon, Invariant varieties for polynomial dynamical systems, Ann. Math. 179 (2014), 81-177. ·Zbl 1347.37145 |
[22] | A. Nijenhuis and R. Richardson, Cohomology and deformations in graded Lie algebras. Bull. Amer. Math. Soc. 72 (1966) 1-29. ·Zbl 0136.30502 |
[23] | L. Poinsot, Differential (Lie) algebras from a functorial point of view, Adv. Appl. Math. 72 (2016), 38-76. ·Zbl 1395.17041 |
[24] | L. Poinsot, Differential (monoid) algebra and more, Lecture Notes in Comput. Sci. 8372, Springer, 2014, 164-189. ·Zbl 1375.12001 |
[25] | M. van der Put and M. Singer, Galois Theory of Linear Differential Equations, Springer-Verlag, 2003. ·Zbl 1036.12008 |
[26] | M. van der Put and M. Singer, Galois Theory of Difference Equations, Springer-Verlag, 1997. ·Zbl 0930.12006 |
[27] | J. F. Ritt, Differential Equations from the Algebraic Standpoint, Amer. Math. Soc., 1934. |
[28] | R. Tang, C. Bai, L. Guo, and Y. Sheng, Deformations and their controlling cohomologies of O-operators, Comm. Math. Phys. 368 (2019), 665-700. ·Zbl 1440.17015 |
[29] | R. Tang, Y. Frégier, and Y. Sheng, Cohomologies of a Lie algebra with a derivation and applica-tions, J. Algebra 534 (2019), 65-99. ·Zbl 1455.17020 |
[30] | W.-T. Wu, A constructive theory of differential algebraic geometry based on works of J. F. Ritt with particular applications to mechanical theorem-proving of differential geometries, Lecture Notes in Math. 1255, Springer-Verlag, 1987, 173-189. ·Zbl 0673.03006 |
[31] | Maria Manuel Clementino, Universidade de Coimbra: mmc@mat.uc.pt Valeria de Paiva, Nuance Communications Inc: valeria.depaiva@gmail.com Richard Garner, Macquarie University: richard.garner@mq.edu.au Ezra Getzler, Northwestern University: getzler (at) northwestern(dot)edu |
[32] | Dirk Hofmann, Universidade de Aveiro: dirk@ua.pt Joachim Kock, Universitat Autònoma de Barcelona: kock (at) mat.uab.cat Stephen Lack, Macquarie University: steve.lack@mq.edu.au Tom Leinster, University of Edinburgh: Tom.Leinster@ed.ac.uk |
[33] | Matias Menni, Conicet and Universidad Nacional de La Plata, Argentina: matias.menni@gmail.com Susan Niefield, Union College: niefiels@union.edu |
[34] | Kate Ponto, University of Kentucky: kate.ponto (at) uky.edu Robert Rosebrugh, Mount Allison University: rrosebrugh@mta.ca Jiří Rosický, Masaryk University: rosicky@math.muni.cz Giuseppe Rosolini, Università di Genova: rosolini@disi.unige.it Michael Shulman, University of San Diego: shulman@sandiego.edu Alex Simpson, University of Ljubljana: Alex.Simpson@fmf.uni-lj.si James Stasheff, University of North Carolina: jds@math.upenn.edu |
[35] | Tim Van der Linden, Université catholique de Louvain: tim.vanderlinden@uclouvain.be |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.