[1] | Agmon, S., The relaxation method for linear inequalities, Canad. J. Math., 6 (1954), pp. 382-392. ·Zbl 0055.35001 |
[2] | Angelos, J. R., Cowen, C. C., and Narayan, S. K., Triangular truncation and finding the norm of a Hadamard multiplier, Linear Algebra Appl., 170 (1992), pp. 117-135. ·Zbl 0751.15010 |
[3] | Ansorge, R., Connections between the Cimmino-method and the Kaczmarz-method for the solution of singular and regular systems of equations, Computing, 33 (1984), pp. 367-375. ·Zbl 0537.65027 |
[4] | Benzi, M., Gianfranco Cimmino’s contributions to numerical mathematics, Atti del Seminario di Analisi Matematica, Dipartimento di Matematica dell’Universita di Bologna. Volume Speciale: Ciclo di Conferenze in Ricordo di Gianfranco Cimmino, 2004, pp. 87-109. |
[5] | Brady, T. and Watt, C., On products of Euclidean reflections, Amer. Math. Monthly, 113 (2006), pp. 826-829. ·Zbl 1157.15302 |
[6] | Censor, Y., Row-action methods for huge and sparse systems and their applications, SIAM Rev., 23 (1981), pp. 444-466, doi:10.1137/1023097. ·Zbl 0469.65037 |
[7] | Censor, Y., Eggermont, P. P., and Gordon, D., Strong underrelaxation in Kaczmarz’s method for inconsistent systems, Numer. Math., 41 (1983), pp. 83-92. ·Zbl 0489.65023 |
[8] | Chen, J.-Q. and Huang, Z.-D., On a fast deterministic block Kaczmarz method for solving large-scale linear systems, Numer. Algorithms, 89 (2022), pp. 1007-1029. ·Zbl 1487.65035 |
[9] | Cimmino, G., Calcolo approssimato per le soluzioni dei sistemi di equazioni lineari, La Ricerca Scientifica, II (1938), pp. 326-333. ·Zbl 0018.41802 |
[10] | Cohen, J. E., Kesten, H., and Newman, C. M., Random Matrices and Their Applications, Proceedings of a Summer Research Conference Held June 17-23, 1984, , American Mathematical Society, Providence, RI, 1986. |
[11] | Deutsch, F., Rate of convergence of the method of alternating projections, Birkhäuser Basel, Basel, 1985, pp. 96-107, doi:10.1007/978-3-0348-6253-0_7. ·Zbl 0575.65049 |
[12] | Deutsch, F. and Hundal, H., The rate of convergence for the method of alternating projections, II, J. Math. Anal. Appl., 205 (1997), pp. 381-405, doi:10.1006/jmaa.1997.5202. ·Zbl 0890.65053 |
[13] | Edelman, A., Eigenvalues and condition numbers of random matrices, SIAM J. Matrix Anal. Appl., 9 (1988), pp. 543-560, doi:10.1137/0609045. ·Zbl 0678.15019 |
[14] | Eggermont, P. P. B., Herman, G. T., and Lent, A., Iterative algorithms for large partitioned linear systems, with applications to image reconstruction, Linear Algebra Appl., 40 (1981), pp. 37-67. ·Zbl 0466.65021 |
[15] | Eldar, Y. C. and Needell, D., Acceleration of randomized Kaczmarz method via the Johnson-Lindenstrauss lemma, Numer. Algorithms, 58 (2011), pp. 163-177. ·Zbl 1230.65051 |
[16] | Feichtinger, H. G., Cenker, C., Mayer, M., Steier, H., and Strohmer, T., New variants of the POCS method using affine subspaces of finite codimension with applications to irregular sampling, Visual Communications and Image Processing ’92, Vol. 1818, SPIE, 1992, pp. 299-310. |
[17] | Galántai, A., On the rate of convergence of the alternating projection method in finite dimensional spaces, J. Math. Anal. Appl., 310 (2005), pp. 30-44, doi:10.1016/j.jmaa.2004.12.050. ·Zbl 1074.65059 |
[18] | Golub, G. H. and Van Loan, C. F., Matrix Computations, 4th ed., The Johns Hopkins University Press, Baltimore, 2013. ·Zbl 1268.65037 |
[19] | Gordon, R., Bender, R., and Herman, G. T., Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography, J. Theoret. Biol., 29 (1970), pp. 471-481, doi:10.1016/0022-5193(70)90109-8. |
[20] | Gower, R., Molitor, D., Moorman, J., and Needell, D., Adaptive Sketch-and-Project Methods for Solving Linear Systems, preprint, https://arxiv.org/abs/1909.03604, 2019. |
[21] | Gower, R. M. and Richtárik, P., Randomized iterative methods for linear systems, SIAM J. Matrix Anal. Appl., 36 (2015), pp. 1660-1690, doi:10.1137/15M1025487. ·Zbl 1342.65110 |
[22] | Hildreth, C.., A quadratic programming procedure, Naval Res. Logist. Q., 4 (1957), pp. 79-85. |
[23] | Jarman, B., Mankovich, N., and Moorman, J. D., Randomized Extended Kaczmarz is a Limit Point of Sketch-and-Project, preprint, arXiv:2110.05605, 2021. |
[24] | Jiao, Y., Jin, B., and Lu, X., Preasymptotic convergence of randomized Kaczmarz method, Inverse Problems, 33 (2017), 125012. ·Zbl 1382.65087 |
[25] | Karczmarz, S., Angenaherte auflosung von systemen linearer glei-chungen, Bull. Int. Acad. Pol. Sic. Let., Cl. Sci. Math. Nat., (1937), pp. 355-357. ·JFM 63.0524.02 |
[26] | Ma, A., Needell, D., and Ramdas, A., Convergence properties of the randomized extended Gauss-Seidel and Kaczmarz methods, SIAM J. Matrix Anal. Appl., 36 (2015), pp. 1590-1604, doi:10.1137/15M1014425. ·Zbl 1327.65112 |
[27] | Meckes, E. S., The Random Matrix Theory of the Classical Compact Groups, , Cambridge University Press, Cambridge, 2019. ·Zbl 1433.22001 |
[28] | Moorman, J. D., Tu, T. K., Molitor, D., and Needell, D., Randomized Kaczmarz with averaging, BIT Numer. Math., 61 (2021), pp. 337-359. ·Zbl 1460.15005 |
[29] | Motzkin, T. S. and Schoenberg, I. J., The relaxation method for linear inequalities, Canad. J. Math., 6 (1954), pp. 393-404. ·Zbl 0055.35002 |
[30] | Necoara, I., Faster randomized block Kaczmarz algorithms, SIAM J. Matrix Anal. Appl., 40 (2019), pp. 1425-1452, doi:10.1137/19M1251643. ·Zbl 1453.65074 |
[31] | Needell, D. and Tropp, J. A., Paved with good intentions: Analysis of a randomized block Kaczmarz method, Linear Algebra Appl., 441 (2014), pp. 199-221. ·Zbl 1282.65042 |
[32] | Needell, D., Ward, R., and Srebro, N., Stochastic gradient descent, weighted sampling, and the randomized Kaczmarz algorithm, Adv. Neural Inf. Process. Syst., 27 (2014), pp. 1017-1025. |
[33] | Needell, D., Zhao, R., and Zouzias, A., Randomized block Kaczmarz method with projection for solving least squares, Linear Algebra Appl., 484 (2015), pp. 322-343. ·Zbl 1330.65056 |
[34] | Niu, Y.-Q. and Zheng, B., A greedy block Kaczmarz algorithm for solving large-scale linear systems, Appl. Math. Lett., 104 (2020), 106294. ·Zbl 1439.65042 |
[35] | Nutini, J., Sepehry, B., Virani, A., Laradji, I., Schmidt, M., and Koepke, H., Convergence rates for greedy kaczmarz algorithms, in Proceedings of the Thirty-Second Conference on Uncertainty in Artificial Intelligence, , 2016, pp. 547-556. |
[36] | Petra, S. and Popa, C., Single projection Kaczmarz extended algorithms, Numer. Algorithms, 73 (2016), pp. 791-806. ·Zbl 1376.65062 |
[37] | Richtárik, P. and Takác, M., Stochastic reformulations of linear systems: Algorithms and convergence theory, SIAM J. Matrix Anal., 41 (2020), pp. 487-524, doi:10.1137/18M1179249. ·Zbl 1440.65045 |
[38] | Shao, C. and Montanaro, A., Faster quantum-inspired algorithms for solving linear systems, ACM Trans. Quantum Comput., 3 (2022), p. 20. |
[39] | Shao, C. and Xiang, H., Row and column iteration methods to solve linear systems on a quantum computer, Phys. Rev. A, 101 (2020), 022322. |
[40] | Steinerberger, S., Surrounding the solution of a linear system of equations from all sides, Quart. Appl. Math., 79 (2021), pp. 419-429. ·Zbl 1470.15005 |
[41] | Strohmer, T. and Vershynin, R., A randomized Kaczmarz algorithm with exponential convergence, J. Fourier Anal. Appl., 15 (2009), pp. 262-278. ·Zbl 1169.68052 |
[42] | Tanabe, K., Projection method for solving a singular system of linear equations and its applications, Numer. Math., 17 (1971), pp. 203-214. ·Zbl 0228.65032 |
[43] | Tao, T. and Vu, V., Smooth analysis of the condition number and the least singular value, Math. Comput., 79 (2010), pp. 2333-2352. ·Zbl 1253.65067 |
[44] | Wu, N. and Xiang, H., Projected randomized Kaczmarz methods, J. Comput. Appl. Math., 372 (2020), 112672. ·Zbl 1433.65070 |
[45] | Xiang, H. and Zhang, L., Randomized Iterative Methods with Alternating Projections, preprint, https://arxiv.org/abs/1708.09845, 2017. |
[46] | Yaniv, Y., Moorman, J. D., Swartworth, W., Tu, T., Landis, D., and Needell, D., Selectable Set Randomized Kaczmarz, preprint, https://arxiv.org/abs/2110.04703, 2021. |
[47] | Zouzias, A. and Freris, N. M., Randomized extended Kaczmarz for solving least squares, SIAM J. Matrix Anal. Appl., 34 (2013), pp. 773-793, doi:10.1137/120889897. ·Zbl 1273.65053 |