Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Fuzzy clustering of probability density functions.(English)Zbl 1516.62507

Summary: Basing on \(L^1\)-distance and representing element of cluster, the article proposes new three algorithms in Fuzzy Clustering of probability density Functions (FCF). They are hierarchical approach, non-hierarchical approach and the algorithm to determine the optimal number of clusters and the initial partition matrix to improve the qualities of established clusters in non-hierarchical approach. With proposed algorithms, FCF has more advantageous than Non-fuzzy Clustering of probability density Functions. These algorithms are applied for recognizing images from Texture and Corel database and practical problem about studying and training marks of students at an university. Many Matlab programs are established for computation in proposed algorithms. These programs are not only used to compute effectively the numerical examples of this article but also to be applied for many different realistic problems.

MSC:

62-XX Statistics

Software:

Matlab

Cite

References:

[1]J.C. Bezdek,Pattern Recognition with Fuzzy Objective Function Algorithms, Springer, New York, 1981. ·Zbl 0503.68069 ·doi:10.1007/978-1-4757-0450-1
[2]J. Chen and W. Hung,An automatic clustering algorithm for probability density functions, J. Stat. Comput. Simul. 85(1) (2015), pp. 3047-3063. ·Zbl 1457.62197
[3]D. Defays,An efficient algorithm for a complete link method, Comput. J. 20(4) (1997), pp. 364-366. ·Zbl 0364.68038 ·doi:10.1093/comjnl/20.4.364
[4]J.C. Dunn,A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters, J. Cybern. 3(3) (2008), pp. 32-57. ·Zbl 0291.68033
[5]K. Fukunaga,Introduction to Statistical Pattern Recognition, 2nd ed., Academic Press, New York, 1990. ·Zbl 0711.62052 ·doi:10.1016/B978-0-08-047865-4.50017-X
[6]I. Gath and A.B. Geva,Unsupervised optimal fuzzy clustering, IEEE Trans. Pattern Anal. Mach. Intell. 11(7) (1989), pp. 773-780. ·doi:10.1109/34.192473
[7]G. George, M.R. Hass, and A. Pentland,Big data and management, Acad. Manage. J. 57(2) (2014), pp. 321-326. ·doi:10.5465/amj.2014.4002
[8]A.K. Ghosh, P. Chaudhuri, and D. Sengupta,Classification using Kernel density estimates: Multi-scale analysis and visualization, Technometrics 48(1) (2006), pp. 120-132.
[9]N. Glick,Separation and probability of correct classification among two or more distributions, Ann. Inst. Statist. Math. 25(1) (1973), pp. 373-382. ·Zbl 0341.62047 ·doi:10.1007/BF02479383
[10]A. Goh and R. Vidal,Unsupervised Riemannian clustering of probability density functions, ECML PKDD Part I LNAI 5211 (2008), pp. 377-392.
[11]E. Gustafson and W. Kessel,Fuzzy clustering with a fuzzy covariance matrix, Proc. IEEE CDC 17 (1979), pp. 761-766. ·Zbl 0448.62045
[12]W.L. Hung and J. Yang,Automatic clustering algorithm for fuzzy data, J. Appl. Stat. 42 (2015), pp. 1503-1518. ·Zbl 1514.62637
[13]S. Javanmardi, M. Shojafar, S. Shariatmadari, and S. Ahrabi,FR trust: A fuzzy reputation-based model for trust management in semantic P2P grids, Int. J. Grid Util. Comput. 6(1) (2014), pp. 57-66. ·doi:10.1504/IJGUC.2015.066397
[14]U. Kaymak and R. Babuska,Compatible cluster merging for fuzzy modeling, Fuzzy Syst. IEEE Trans. 2 (1995), pp. 897-904.
[15]R. Krishnapuram and C.P. Freg,Fitting an unknown number of lines and planes to image data through compatible cluster merging, Pattern Recognit. 25(4) (1992), pp. 385-400. ·doi:10.1016/0031-3203(92)90087-Y
[16]W.L. Martinez and Q.R. Martinez,Computational Statistics Handbook with Matlab, 2nd ed., Chapman & Hall, London, 2008. ·Zbl 1130.62116
[17]K. Matusita,On the notion of affinity of several distributions and some of its applications, Ann. Inst. Statist. Math. 19(1) (1967), pp. 181-192. ·Zbl 0161.37704 ·doi:10.1007/BF02911675
[18]N.R. Pal and J.C. Bezdek,On cluster validity for the fuzzy c- means model, Fuzzy Syst. IEEE Trans. 3(3) (1995), pp. 370-379. ·doi:10.1109/91.413225
[19]T. Pham-Gia and N. Turkkan, Baysian analysis in the \(L^1\)-norm of the mixing proportion using discriminant analysis, Metrika 64(1) (2006), pp. 1-22. ·Zbl 1099.62026 ·doi:10.1007/s00184-006-0027-1
[20]T. Pham-Gia, N. Turkkan, and A. Bekker,Bounds for the Bayes error in classification: A Bayesian approach using discriminant analysis, Stat. Methods Appl. 16 (2006), pp. 7-26. ·Zbl 1156.62336 ·doi:10.1007/s10260-006-0012-x
[21]T. Pham-Gia, N. Turkkan, and T. Vovan,Statistical discrimination analysis using the maximum function, Commun. Stat. Comput. 37(2) (2008), pp. 320-336. ·Zbl 1132.62049
[22]F.J. Rohlf,Single-link clustering algorithms, inHandbook of Statistics, P.R. Krishnaiah and L.N. Kanal, eds., North-Holland, Amsterdam, Vol. 2, 1982, pp. 267-284. ·Zbl 0511.62074 ·doi:10.1016/S0169-7161(82)02015-X
[23]D.W. Scott,Mutivariate Density Estimation: Theory, Practice and Visualization, John Wiley & Son, New York, 1992. ·Zbl 0850.62006 ·doi:10.1002/9780470316849
[24]S. Shamshirband, A. Amini, N.B. Anuar, L. Mat Kiah, Y.W. Teh, and S. Furnell,D-FICCA: A density-based fuzzy imperialist competitive clustering algorithm for intrusion detection in wireless sensor networks, Measurement 55 (2014), pp. 212-226. ·doi:10.1016/j.measurement.2014.04.034
[25]R. Sibson,Sink: An optimally efficient algorithm for the single-link cluster method, Comput. J. 16(1) (1973), pp. 30-34. ·doi:10.1093/comjnl/16.1.30
[26]B.W. Silverman,Density Estimation for Statistics and Data Analysis, Chapman & Hall, London, 1986. ·Zbl 0617.62042 ·doi:10.1007/978-1-4899-3324-9
[27]G.T. Toussaint,Some inequalities between distance measures for feature evaluation, IEEE Trans. Comput. 21 (1972), pp. 409-410. ·Zbl 0234.68039 ·doi:10.1109/TC.1972.5008991
[28]T. Vovan and T. Pham-Gia,Clustering probability distributions, J. Appl. Stat. 37(11) (2010), pp. 1891-1910. ·Zbl 1511.62142
[29]A.R. Webb,Statistical Pattern Recognition, 2nd ed., Wiley, New York, 2002. ·Zbl 1102.68639 ·doi:10.1002/0470854774
[30]X. Wu, X. Zhu, G.Q. Wu, and W. Ding,Data mining with big data, IEEE Trans. Knowl. Data Eng. 26(1) (2013), pp. 97-107.
[31]X.L. Xie and G. Beni,A validity measure for fuzzy clustering, Pattern Anal. Mach. Intell. IEEE Trans. 13(8) (1991), pp. 841-847. ·doi:10.1109/34.85677
[32]L. Xu, Q. Hu, E. Hung, B. Chen, X. Tan, and C. Liao,Large margin clustering on uncertain data by considering probability distribution similarity, Neurocomputing 158 (2015), pp. 81-89. ·doi:10.1016/j.neucom.2015.02.002
[33]L.A. Zadeh,Fuzzy set, Inf. Control 8(3) (1965), pp. 338-353. ·Zbl 0139.24606 ·doi:10.1016/S0019-9958(65)90241-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp