[1] | J.C. Bezdek,Pattern Recognition with Fuzzy Objective Function Algorithms, Springer, New York, 1981. ·Zbl 0503.68069 ·doi:10.1007/978-1-4757-0450-1 |
[2] | J. Chen and W. Hung,An automatic clustering algorithm for probability density functions, J. Stat. Comput. Simul. 85(1) (2015), pp. 3047-3063. ·Zbl 1457.62197 |
[3] | D. Defays,An efficient algorithm for a complete link method, Comput. J. 20(4) (1997), pp. 364-366. ·Zbl 0364.68038 ·doi:10.1093/comjnl/20.4.364 |
[4] | J.C. Dunn,A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters, J. Cybern. 3(3) (2008), pp. 32-57. ·Zbl 0291.68033 |
[5] | K. Fukunaga,Introduction to Statistical Pattern Recognition, 2nd ed., Academic Press, New York, 1990. ·Zbl 0711.62052 ·doi:10.1016/B978-0-08-047865-4.50017-X |
[6] | I. Gath and A.B. Geva,Unsupervised optimal fuzzy clustering, IEEE Trans. Pattern Anal. Mach. Intell. 11(7) (1989), pp. 773-780. ·doi:10.1109/34.192473 |
[7] | G. George, M.R. Hass, and A. Pentland,Big data and management, Acad. Manage. J. 57(2) (2014), pp. 321-326. ·doi:10.5465/amj.2014.4002 |
[8] | A.K. Ghosh, P. Chaudhuri, and D. Sengupta,Classification using Kernel density estimates: Multi-scale analysis and visualization, Technometrics 48(1) (2006), pp. 120-132. |
[9] | N. Glick,Separation and probability of correct classification among two or more distributions, Ann. Inst. Statist. Math. 25(1) (1973), pp. 373-382. ·Zbl 0341.62047 ·doi:10.1007/BF02479383 |
[10] | A. Goh and R. Vidal,Unsupervised Riemannian clustering of probability density functions, ECML PKDD Part I LNAI 5211 (2008), pp. 377-392. |
[11] | E. Gustafson and W. Kessel,Fuzzy clustering with a fuzzy covariance matrix, Proc. IEEE CDC 17 (1979), pp. 761-766. ·Zbl 0448.62045 |
[12] | W.L. Hung and J. Yang,Automatic clustering algorithm for fuzzy data, J. Appl. Stat. 42 (2015), pp. 1503-1518. ·Zbl 1514.62637 |
[13] | S. Javanmardi, M. Shojafar, S. Shariatmadari, and S. Ahrabi,FR trust: A fuzzy reputation-based model for trust management in semantic P2P grids, Int. J. Grid Util. Comput. 6(1) (2014), pp. 57-66. ·doi:10.1504/IJGUC.2015.066397 |
[14] | U. Kaymak and R. Babuska,Compatible cluster merging for fuzzy modeling, Fuzzy Syst. IEEE Trans. 2 (1995), pp. 897-904. |
[15] | R. Krishnapuram and C.P. Freg,Fitting an unknown number of lines and planes to image data through compatible cluster merging, Pattern Recognit. 25(4) (1992), pp. 385-400. ·doi:10.1016/0031-3203(92)90087-Y |
[16] | W.L. Martinez and Q.R. Martinez,Computational Statistics Handbook with Matlab, 2nd ed., Chapman & Hall, London, 2008. ·Zbl 1130.62116 |
[17] | K. Matusita,On the notion of affinity of several distributions and some of its applications, Ann. Inst. Statist. Math. 19(1) (1967), pp. 181-192. ·Zbl 0161.37704 ·doi:10.1007/BF02911675 |
[18] | N.R. Pal and J.C. Bezdek,On cluster validity for the fuzzy c- means model, Fuzzy Syst. IEEE Trans. 3(3) (1995), pp. 370-379. ·doi:10.1109/91.413225 |
[19] | T. Pham-Gia and N. Turkkan, Baysian analysis in the \(L^1\)-norm of the mixing proportion using discriminant analysis, Metrika 64(1) (2006), pp. 1-22. ·Zbl 1099.62026 ·doi:10.1007/s00184-006-0027-1 |
[20] | T. Pham-Gia, N. Turkkan, and A. Bekker,Bounds for the Bayes error in classification: A Bayesian approach using discriminant analysis, Stat. Methods Appl. 16 (2006), pp. 7-26. ·Zbl 1156.62336 ·doi:10.1007/s10260-006-0012-x |
[21] | T. Pham-Gia, N. Turkkan, and T. Vovan,Statistical discrimination analysis using the maximum function, Commun. Stat. Comput. 37(2) (2008), pp. 320-336. ·Zbl 1132.62049 |
[22] | F.J. Rohlf,Single-link clustering algorithms, inHandbook of Statistics, P.R. Krishnaiah and L.N. Kanal, eds., North-Holland, Amsterdam, Vol. 2, 1982, pp. 267-284. ·Zbl 0511.62074 ·doi:10.1016/S0169-7161(82)02015-X |
[23] | D.W. Scott,Mutivariate Density Estimation: Theory, Practice and Visualization, John Wiley & Son, New York, 1992. ·Zbl 0850.62006 ·doi:10.1002/9780470316849 |
[24] | S. Shamshirband, A. Amini, N.B. Anuar, L. Mat Kiah, Y.W. Teh, and S. Furnell,D-FICCA: A density-based fuzzy imperialist competitive clustering algorithm for intrusion detection in wireless sensor networks, Measurement 55 (2014), pp. 212-226. ·doi:10.1016/j.measurement.2014.04.034 |
[25] | R. Sibson,Sink: An optimally efficient algorithm for the single-link cluster method, Comput. J. 16(1) (1973), pp. 30-34. ·doi:10.1093/comjnl/16.1.30 |
[26] | B.W. Silverman,Density Estimation for Statistics and Data Analysis, Chapman & Hall, London, 1986. ·Zbl 0617.62042 ·doi:10.1007/978-1-4899-3324-9 |
[27] | G.T. Toussaint,Some inequalities between distance measures for feature evaluation, IEEE Trans. Comput. 21 (1972), pp. 409-410. ·Zbl 0234.68039 ·doi:10.1109/TC.1972.5008991 |
[28] | T. Vovan and T. Pham-Gia,Clustering probability distributions, J. Appl. Stat. 37(11) (2010), pp. 1891-1910. ·Zbl 1511.62142 |
[29] | A.R. Webb,Statistical Pattern Recognition, 2nd ed., Wiley, New York, 2002. ·Zbl 1102.68639 ·doi:10.1002/0470854774 |
[30] | X. Wu, X. Zhu, G.Q. Wu, and W. Ding,Data mining with big data, IEEE Trans. Knowl. Data Eng. 26(1) (2013), pp. 97-107. |
[31] | X.L. Xie and G. Beni,A validity measure for fuzzy clustering, Pattern Anal. Mach. Intell. IEEE Trans. 13(8) (1991), pp. 841-847. ·doi:10.1109/34.85677 |
[32] | L. Xu, Q. Hu, E. Hung, B. Chen, X. Tan, and C. Liao,Large margin clustering on uncertain data by considering probability distribution similarity, Neurocomputing 158 (2015), pp. 81-89. ·doi:10.1016/j.neucom.2015.02.002 |
[33] | L.A. Zadeh,Fuzzy set, Inf. Control 8(3) (1965), pp. 338-353. ·Zbl 0139.24606 ·doi:10.1016/S0019-9958(65)90241-X |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.