[1] | Al’pin, Y. A. and Al’pina, V. S., Combinatorial properties of irreducible semigroups of nonnegative matrices, J. Math. Sci. (N. Y.), 191 (2013), pp. 4-9, doi:10.1007/s10958-013-1295-8. ·Zbl 1276.15015 |
[2] | Al’pin, Y. A. and Al’pina, V. S., A new proof of the Protasov-Voynov theorem on semigroups of nonnegative matrices, Math. Notes, 105 (2019), pp. 805-811, doi:10.1134/S0001434619050183. ·Zbl 1426.15013 |
[3] | Ananichev, D. S., Volkov, M. V., and Gusev, V. V., Primitive digraphs with large exponents and slowly synchronizing automata, J. Math. Sci. (N. Y.), 192 (2013), pp. 263-278, doi:10.1007/s10958-013-1392-8. ·Zbl 1276.68089 |
[4] | Bang-Jensen, J. and Gutin, G., Digraphs: Theory, Algorithms and Applications, , 2nd ed., Springer-Verlag, London, 2009, doi:10.1007/978-1-84800-998-1. ·Zbl 1170.05002 |
[5] | Blondel, V. D., Jungers, R. M., and Olshevsky, A., On primitivity of sets of matrices, Automatica J. IFAC, 61 (2015), pp. 80-88, doi:10.1016/j.automatica.2015.07.026. ·Zbl 1337.15024 |
[6] | Bok, J., Fiala, J., Hliněný, P., Jedličková, N., and Kratochvíl, J., Computational complexity of covering multigraphs with semi-edges: Small cases, in 46th International Symposium on Mathematical Foundations of Computer Science, , , Schloss Dagstuhl, Leibniz Center for Informatics, Wadern, 2021, 21. ·Zbl 07724194 |
[7] | Černý, J., A remark on homogeneous experiments with finite automata, Mat.-Fyz. Časopis Sloven. Akad. Vied, 14 (1964), pp. 208-216 (in Slovak with English summary). ·Zbl 0137.01101 |
[8] | Černý, J., A note on homogeneous experiments with finite automata, J. Autom. Lang. Comb., 24 (2019), pp. 123-132, doi:10.25596/jalc-2019-123. ·Zbl 1427.68140 |
[9] | Černý, J., Pirická, A., and Rosenauerová, B., On directable automata, Kybernetika (Prague), 7 (1971), pp. 289-298. ·Zbl 0223.94029 |
[10] | Chang, T.-P. and Tong, L.-D., The Hamiltonian numbers in digraphs, J. Combin. Optim., 25 (2013), pp. 694-701, doi:10.1007/s10878-012-9512-9. ·Zbl 1291.90276 |
[11] | Chevalier, P., Gusev, V. V., Jungers, R. M., and Hendrickx, J. M., Sets of Stochastic Matrices with Converging Products: Bounds and Complexity, CoRR, https://arxiv.org/abs/1712.02614, 2017. |
[12] | Chevalier, P.-Y., Hendrickx, J. M., and Jungers, R. M., Reachability of consensus and synchronizing automata, in Proceedings of the 54th IEEE Conference on Decision and Control, , 2015, pp. 4139-4144, doi:10.1109/CDC.2015.7402864. |
[13] | Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C., Introduction to Algorithms, 3rd ed., MIT Press, Cambridge, MA, 2009. ·Zbl 1187.68679 |
[14] | K. Culik, J. Karhumäki II and Kari, J., A note on synchronized automata and road coloring problem, Internat. J. Found. Comput. Sci., 13 (2002), pp. 459-471, doi:10.1142/S0129054102001217. ·Zbl 1066.68065 |
[15] | Fornasini, E., 2D Markov chains, Linear Algebra Appl., 140 (1990), pp. 101-127, doi:10.1016/0024-3795(90)90224-Z. ·Zbl 0707.60062 |
[16] | Fornasini, E. and Valcher, M. E., Directed graph, 2D state models, and characteristic polynomials of irreducible matrix pairs, Linear Algebra Appl., 263 (1997), pp. 275-310, doi:10.1016/S0024-3795(96)00540-X. ·Zbl 0887.93033 |
[17] | Fornasini, E., Valcher, M. E., and Pinto, R., A polynomial matrix approach to the structural properties of 2D positive systems, Linear Algebra Appl., 413 (2006), pp. 458-473, doi:10.1016/j.laa.2005.11.006. ·Zbl 1103.93016 |
[18] | Frankl, P., An extremal problem for two families of sets, European J. Combin., 3 (1982), pp. 125-127, doi:10.1016/S0195-6698(82)80025-5. ·Zbl 0488.05004 |
[19] | Friedman, J., On the road coloring problem, Proc. Amer. Math. Soc., 110 (1990), pp. 1133-1135, doi:10.2307/2047767. ·Zbl 0745.05031 |
[20] | Gawrychowski, P. and Straszak, D., Strong inapproximability of the shortest reset word, in Mathematical Foundations of Computer Science 2015. Part I, , Springer, Heidelberg, 2015, pp. 243-255, doi:10.1007/978-3-662-48057-1_19. ·Zbl 1466.68051 |
[21] | Gerencsér, B., Gusev, V. V., and Jungers, R. M., Primitive sets of nonnegative matrices and synchronizing automata, SIAM J. Matrix Anal. Appl., 39 (2018), pp. 83-98, doi:10.1137/16M1094099. ·Zbl 1378.15020 |
[22] | Grosshans, F. D., Rota, G.-C., and Stein, J. A., Invariant Theory and Superalgebras, , AMS, Providence, RI, 1987, doi:10.1090/cbms/069. ·Zbl 0648.15020 |
[23] | Gusev, V. V., Lower bounds for the length of reset words in Eulerian automata, Internat J. Found. Comput. Sci., 24 (2013), pp. 251-262, doi:10.1142/S0129054113400108. ·Zbl 1295.68144 |
[24] | Gusev, V. V., Jungers, R. M., and Pribavkina, E. V., Generalized primitivity of labeled digraphs, Electron. Notes Discrete Math., 61 (2017), pp. 549-555, doi:10.1016/j.endm.2017.07.006. ·Zbl 1379.05047 |
[25] | Hartfiel, D. J., Nonhomogeneous Matrix Products, World Scientific, River Edge, NJ, 2002. ·Zbl 1011.15006 |
[26] | Hatcher, A., Algebraic Topology, Cambridge University Press, Cambridge, UK, 2002, https://pi.math.cornell.edu/hatcher/AT/ATpage.html. ·Zbl 1044.55001 |
[27] | Iosifescu, M., Finite Markov Processes and Their Applications, , John Wiley & Sons, Chichester, UK, 1980. ·Zbl 0436.60001 |
[28] | Jones, G. A., Elementary abelian regular coverings of Platonic maps, J. Algebraic Combin., 41 (2015), pp. 461-491, doi:10.1007/s10801-014-0542-5. ·Zbl 1308.05080 |
[29] | Kari, J., Synchronization and stability of finite automata, J. UCS, 8 (2002), pp. 270-277, https://www.jucs.org/jucs_8_2/synchronization_and_stability_of.html. ·Zbl 1258.68084 |
[30] | Kari, J., Synchronizing finite automata on Eulerian digraphs, Theoret. Comput. Sci., 295 (2003), pp. 223-232, doi:10.1016/S0304-3975(02)00405-X. ·Zbl 1045.68082 |
[31] | Kari, J. and Volkov, M. V., Černý’s conjecture and the road colouring problem, in Handbook of Automata Theory, Kari, J., ed., Vol. I, European Mathematical Society, Berlin, 2021, pp. 525-565, doi:10.4171/Automata. ·Zbl 1543.68172 |
[32] | Laemmel, A. E., Application of lattice-ordered semigroups to codes and finite-state transducers, in Proceedings of the Symposium on Mathematical Theory of Automata, , Polytechnic Press, Brooklyn, NY, 1963, pp. 241-256. ·Zbl 0122.12801 |
[33] | Liu, C. L., Some Memory Aspects of Finite Automata, Ph.D. thesis, MIT Research Laboratory of Electronics, Massachusetts Institute of Technology, 1963, https://dspace.mit.edu/handle/1721.1/4414. |
[34] | Martyugin, P., Computational complexity of certain problems related to carefully synchronizing words for partial automata and directing words for nondeterministic automata, Theory Comput. Syst., 54 (2014), pp. 293-304, doi:10.1007/s00224-013-9516-6. ·Zbl 1380.68257 |
[35] | Mednykh, A., On the Riemann-Hurwitz formula for regular graph coverings, in Automorphisms of Riemann Surfaces, Subgroups of Mapping Class Groups and Related Topics, , AMS, Providence, RI, 2022, pp. 301-309, doi:10.1090/conm/776/15618. |
[36] | Nummelin, E., General Irreducible Markov Chains and Nonnegative Operators, , Cambridge University Press, Cambridge, UK, 1984, doi:10.1017/CBO9780511526237. ·Zbl 0551.60066 |
[37] | Olesky, D. D., Shader, B., and van den Driessche, P., Exponents of tuples of nonnegative matrices, Linear Algebra Appl., 356 (2002), pp. 123-134, doi:10.1016/S0024-3795(02)00365-8. ·Zbl 1018.15018 |
[38] | Pin, J.-E., On two combinatorial problems arising from automata theory, in Combinatorial Mathematics, , North-Holland, Amsterdam, 1983, pp. 535-548. ·Zbl 0523.68042 |
[39] | Prasad, A., Representation Theory: A Combinatorial Viewpoint, , Cambridge University Press, Delhi, 2015, doi:10.1017/CBO9781139976824. ·Zbl 1331.20007 |
[40] | Protasov, V. Y., Invariant functionals of random matrices, Funktsional Anal. i Prilozhen, 44 (2010), pp. 84-88, doi:10.1007/s10688-010-0031-0. |
[41] | Protasov, V. Y., When do several linear operators share an invariant cone?, Linear Algebra Appl., 433 (2010), pp. 781-789, doi:10.1016/j.laa.2010.04.006. ·Zbl 1195.15034 |
[42] | Protasov, V. Y., Classification of k-primitive sets of matrices, SIAM J. Matrix Anal. Appl., 34 (2013), pp. 1174-1188, doi:10.1137/120883414. ·Zbl 1281.15039 |
[43] | Protasov, V. Y., Primitivity and synchronizing automata: A functional analytic approach, in Reachability Problems, Filiot, E., Jungers, R., and Potapov, I., eds., , Springer, Cham, 2019, pp. 13-21, doi:10.1007/978-3-030-30806-3_2. ·Zbl 1515.68166 |
[44] | Protasov, V. Y., Analytic methods for reachability problems, J. Comput. System Sci., 120 (2021), pp. 1-13, doi:10.1016/j.jcss.2021.02.007. ·Zbl 1477.68159 |
[45] | Protasov, V. Y. and Voynov, A. S., Sets of nonnegative matrices without positive products, Linear Algebra Appl., 437 (2012), pp. 749-765, doi:10.1016/j.laa.2012.02.029. ·Zbl 1245.15033 |
[46] | Rystsov, I. K., Asymptotic estimate of the length of a diagnostic word for a finite automaton, Cybernet. Systems Anal., 16 (1980), pp. 194-198, doi:10.1007/BF01069104. ·Zbl 0447.68058 |
[47] | Sachkov, V. N. and Tarakanov, V. E., Combinatorics of Nonnegative Matrices, , AMS, Providence, RI, 2002, doi:10.1090/mmono/213. ·Zbl 1006.05001 |
[48] | Salomaa, A., Parikh matrices: Subword indicators and degrees of ambiguity, in Adventures Between Lower Bounds and Higher Altitudes: Essays Dedicated to Juraj Hromkovič on the Occasion of His 60th Birthday, Böckenhauer, H.-J., Komm, D., and Unger, W., eds., , Springer, Cham, 2018, pp. 100-112, doi:10.1007/978-3-319-98355-4_7. ·Zbl 1398.68015 |
[49] | Seneta, E., Nonnegative Matrices and Markov Chains, , 2nd ed., Springer-Verlag, New York, 1981, doi:10.1007/0-387-32792-4. ·Zbl 0471.60001 |
[50] | Shitov, Y., An improvement to a recent upper bound for synchronizing words of finite automata, J. Autom. Lang. Comb., 24 (2019), pp. 367-373, doi:10.25596/jalc-2019-367. ·Zbl 1447.68007 |
[51] | Stark, H. M. and Terras, A. A., Zeta functions of finite graphs and coverings. II, Adv. Math., 154 (2000), pp. 132-195, doi:10.1006/aima.2000.1917. ·Zbl 0972.11086 |
[52] | Szykuła, M., Improving the upper bound and the length of the shortest reset words, in 35th Symposium on Theoretical Aspects of Computer Science, , , Schloss Dagstuhl, Leibniz Center for Informatics, Wadern, 2018, 56, doi:10.4230/LIPIcs.STACS.2018.56. ·Zbl 1440.68164 |
[53] | Tarjan, R., Depth-first search and linear graph algorithms, SIAM J. Comput., 1 (1972), pp. 146-160, doi:10.1137/0201010. ·Zbl 0251.05107 |
[54] | Trahtman, A. N., The road coloring problem, Israel J. Math., 172 (2009), pp. 51-60, doi:10.1007/s11856-009-0062-5. ·Zbl 1175.05058 |
[55] | Volkov, M. V., Synchronizing automata and the Černý conjecture, in Language and Automata Theory and Applications, , Springer, Berlin, 2008, pp. 11-27, doi:10.1007/978-3-540-88282-4_4. ·Zbl 1156.68466 |
[56] | Voĭnov, A. S., Self-affine polyhedra: Applications to functional equations and matrix theory, Mat. Sb., 202 (2011), pp. 3-30, doi:10.1070/SM2011v202n10ABEH004193. ·Zbl 1251.52006 |
[57] | Voĭnov, A. S. and Protasov, V. Y., Compact noncontraction semigroups of affine operators, Mat. Sb., 206 (2015), pp. 33-54, doi:10.4213/sm8408. ·Zbl 1341.47048 |
[58] | Voynov, A., Shortest positive products of nonnegative matrices, Linear Algebra Appl., 439 (2013), pp. 1627-1634, doi:10.1016/j.laa.2013.04.025. ·Zbl 1283.15111 |
[59] | Wielandt, H., Unzerlegbare, nicht negative matrizen, Math. Z., 52 (1950), pp. 642-648, doi:10.1007/BF02230720. ·Zbl 0035.29101 |
[60] | Wu, Y., Xu, Z., and Zhu, Y., An expansion property of Boolean linear maps, Electron J. Linear Algebra, 31 (2016), pp. 381-407, doi:10.13001/1081-3810.3088. ·Zbl 1339.05164 |
[61] | Wu, Y. and Zhu, Y., Strongly Synchronizing Automata, manuscipt, 2023. |