Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Primitivity and Hurwitz primitivity of nonnegative matrix tuples: a unified approach.(English)Zbl 1516.15021

For an \(m\)-tuple of nonnegative \(n \times n\) matrices \((A_1, \ldots,A_m)\), primitivity and (Hurwitz primitivity) means the existence of a positive product (Hurwitz product). Note that all products are with repetitions allowed. The Hurwitz product with a Parikh vector \(\alpha=(\alpha_1,\ldots,\alpha_m) \in \mathbb{Z}_{\geq 0}^m\) is the sum of all products with \(\alpha_i\) multipliers \(A_i\), \(i=1,2,\ldots,m\). On the other hand, ergodicity (Hurwitz ergodicity) means the existence of the corresponding product (Hurwitz product) with a positive row.
In this manuscript, the authors use the following notation: \(\mathrm{Mat}_n(\mathbb{R}_{\geq 0})\) is the set of \(n \times n\) nonnegative real matrices, while the set of nonnegative matrices that has no zero rows (columns) is denoted by \(NZ_1\) (\(NZ_2\)). For any real number \(x\), \([x]\) denotes the set \(\{i \in \mathbb{N}: i \leq x \}\).
In 2012V. Yu. Protasov andA. S. Voynov [Linear Algebra Appl. 437, No. 3, 749–765 (2012;Zbl 1245.15033)]characterized the primitive tuples of matrices without zero rows and columns and one year laterV. Yu. Protasov [SIAM J. Matrix Anal. Appl. 34, No. 3, 1174–1188 (2013;Zbl 1281.15039)] classified the Hurwitz primitive tuples of matrices without zero rows. These characterizations can be stated as follows:
Theorem. Let \(\mathcal{A} \subseteq\mathrm{Mat}_n(\mathbb{R}_{\geq 0})\) be an irreducible set of matrices belonging to \(NZ_1\). Then \(\mathcal{A}\) is not Hurwitz primitive if and only if we can find a nontrivial partition \(\pi\) of \([n]\) and \(\sigma_A \in \mathrm{Sym}_{|\pi|}\) for all \(A \in \mathcal{A}\) such that \(\sigma_A \sigma_B=\sigma_B \sigma_A\) and \(A\) acts on \(\pi\) subordinate to \(\sigma_A\), for all \(A,B \in\mathcal{A}\).
Theorem. Let \(\mathcal{A} \subseteq\mathrm{Mat}_n(\mathbb{R}_{\geq 0})\) be an irreducible set of matrices belonging to \(NZ_2\). Then \(\mathcal{A}\) is primitive if and only if there is no nontrivial partition \(\pi\) of \([n]\) which is preserved by all elements of \(\mathcal{A}\).
In this paper, the authors give a unified proof of these results. First, adopting the usual approach in combinatorial matrix theory, they explain how to deal with various reachability properties of nonnegative matrix tuples as combinatorial problems about digraphs. Next, the authors present a sketch of a proof of the previous results from the viewpoint of a stable relation. Finally, the two last sections of the paper are devoted to recognition algorithms, finding certifying products, and estimating exponents for various reachability properties of matrix sets from \(NZ_1\) and \(NZ_2\).

MSC:

15B48 Positive matrices and their generalizations; cones of matrices
15A30 Algebraic systems of matrices
05C50 Graphs and linear algebra (matrices, eigenvalues, etc.)
05B20 Combinatorial aspects of matrices (incidence, Hadamard, etc.)
47D03 Groups and semigroups of linear operators

Cite

References:

[1]Al’pin, Y. A. and Al’pina, V. S., Combinatorial properties of irreducible semigroups of nonnegative matrices, J. Math. Sci. (N. Y.), 191 (2013), pp. 4-9, doi:10.1007/s10958-013-1295-8. ·Zbl 1276.15015
[2]Al’pin, Y. A. and Al’pina, V. S., A new proof of the Protasov-Voynov theorem on semigroups of nonnegative matrices, Math. Notes, 105 (2019), pp. 805-811, doi:10.1134/S0001434619050183. ·Zbl 1426.15013
[3]Ananichev, D. S., Volkov, M. V., and Gusev, V. V., Primitive digraphs with large exponents and slowly synchronizing automata, J. Math. Sci. (N. Y.), 192 (2013), pp. 263-278, doi:10.1007/s10958-013-1392-8. ·Zbl 1276.68089
[4]Bang-Jensen, J. and Gutin, G., Digraphs: Theory, Algorithms and Applications, , 2nd ed., Springer-Verlag, London, 2009, doi:10.1007/978-1-84800-998-1. ·Zbl 1170.05002
[5]Blondel, V. D., Jungers, R. M., and Olshevsky, A., On primitivity of sets of matrices, Automatica J. IFAC, 61 (2015), pp. 80-88, doi:10.1016/j.automatica.2015.07.026. ·Zbl 1337.15024
[6]Bok, J., Fiala, J., Hliněný, P., Jedličková, N., and Kratochvíl, J., Computational complexity of covering multigraphs with semi-edges: Small cases, in 46th International Symposium on Mathematical Foundations of Computer Science, , , Schloss Dagstuhl, Leibniz Center for Informatics, Wadern, 2021, 21. ·Zbl 07724194
[7]Černý, J., A remark on homogeneous experiments with finite automata, Mat.-Fyz. Časopis Sloven. Akad. Vied, 14 (1964), pp. 208-216 (in Slovak with English summary). ·Zbl 0137.01101
[8]Černý, J., A note on homogeneous experiments with finite automata, J. Autom. Lang. Comb., 24 (2019), pp. 123-132, doi:10.25596/jalc-2019-123. ·Zbl 1427.68140
[9]Černý, J., Pirická, A., and Rosenauerová, B., On directable automata, Kybernetika (Prague), 7 (1971), pp. 289-298. ·Zbl 0223.94029
[10]Chang, T.-P. and Tong, L.-D., The Hamiltonian numbers in digraphs, J. Combin. Optim., 25 (2013), pp. 694-701, doi:10.1007/s10878-012-9512-9. ·Zbl 1291.90276
[11]Chevalier, P., Gusev, V. V., Jungers, R. M., and Hendrickx, J. M., Sets of Stochastic Matrices with Converging Products: Bounds and Complexity, CoRR, https://arxiv.org/abs/1712.02614, 2017.
[12]Chevalier, P.-Y., Hendrickx, J. M., and Jungers, R. M., Reachability of consensus and synchronizing automata, in Proceedings of the 54th IEEE Conference on Decision and Control, , 2015, pp. 4139-4144, doi:10.1109/CDC.2015.7402864.
[13]Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C., Introduction to Algorithms, 3rd ed., MIT Press, Cambridge, MA, 2009. ·Zbl 1187.68679
[14]K. Culik, J. Karhumäki II and Kari, J., A note on synchronized automata and road coloring problem, Internat. J. Found. Comput. Sci., 13 (2002), pp. 459-471, doi:10.1142/S0129054102001217. ·Zbl 1066.68065
[15]Fornasini, E., 2D Markov chains, Linear Algebra Appl., 140 (1990), pp. 101-127, doi:10.1016/0024-3795(90)90224-Z. ·Zbl 0707.60062
[16]Fornasini, E. and Valcher, M. E., Directed graph, 2D state models, and characteristic polynomials of irreducible matrix pairs, Linear Algebra Appl., 263 (1997), pp. 275-310, doi:10.1016/S0024-3795(96)00540-X. ·Zbl 0887.93033
[17]Fornasini, E., Valcher, M. E., and Pinto, R., A polynomial matrix approach to the structural properties of 2D positive systems, Linear Algebra Appl., 413 (2006), pp. 458-473, doi:10.1016/j.laa.2005.11.006. ·Zbl 1103.93016
[18]Frankl, P., An extremal problem for two families of sets, European J. Combin., 3 (1982), pp. 125-127, doi:10.1016/S0195-6698(82)80025-5. ·Zbl 0488.05004
[19]Friedman, J., On the road coloring problem, Proc. Amer. Math. Soc., 110 (1990), pp. 1133-1135, doi:10.2307/2047767. ·Zbl 0745.05031
[20]Gawrychowski, P. and Straszak, D., Strong inapproximability of the shortest reset word, in Mathematical Foundations of Computer Science 2015. Part I, , Springer, Heidelberg, 2015, pp. 243-255, doi:10.1007/978-3-662-48057-1_19. ·Zbl 1466.68051
[21]Gerencsér, B., Gusev, V. V., and Jungers, R. M., Primitive sets of nonnegative matrices and synchronizing automata, SIAM J. Matrix Anal. Appl., 39 (2018), pp. 83-98, doi:10.1137/16M1094099. ·Zbl 1378.15020
[22]Grosshans, F. D., Rota, G.-C., and Stein, J. A., Invariant Theory and Superalgebras, , AMS, Providence, RI, 1987, doi:10.1090/cbms/069. ·Zbl 0648.15020
[23]Gusev, V. V., Lower bounds for the length of reset words in Eulerian automata, Internat J. Found. Comput. Sci., 24 (2013), pp. 251-262, doi:10.1142/S0129054113400108. ·Zbl 1295.68144
[24]Gusev, V. V., Jungers, R. M., and Pribavkina, E. V., Generalized primitivity of labeled digraphs, Electron. Notes Discrete Math., 61 (2017), pp. 549-555, doi:10.1016/j.endm.2017.07.006. ·Zbl 1379.05047
[25]Hartfiel, D. J., Nonhomogeneous Matrix Products, World Scientific, River Edge, NJ, 2002. ·Zbl 1011.15006
[26]Hatcher, A., Algebraic Topology, Cambridge University Press, Cambridge, UK, 2002, https://pi.math.cornell.edu/hatcher/AT/ATpage.html. ·Zbl 1044.55001
[27]Iosifescu, M., Finite Markov Processes and Their Applications, , John Wiley & Sons, Chichester, UK, 1980. ·Zbl 0436.60001
[28]Jones, G. A., Elementary abelian regular coverings of Platonic maps, J. Algebraic Combin., 41 (2015), pp. 461-491, doi:10.1007/s10801-014-0542-5. ·Zbl 1308.05080
[29]Kari, J., Synchronization and stability of finite automata, J. UCS, 8 (2002), pp. 270-277, https://www.jucs.org/jucs_8_2/synchronization_and_stability_of.html. ·Zbl 1258.68084
[30]Kari, J., Synchronizing finite automata on Eulerian digraphs, Theoret. Comput. Sci., 295 (2003), pp. 223-232, doi:10.1016/S0304-3975(02)00405-X. ·Zbl 1045.68082
[31]Kari, J. and Volkov, M. V., Černý’s conjecture and the road colouring problem, in Handbook of Automata Theory, Kari, J., ed., Vol. I, European Mathematical Society, Berlin, 2021, pp. 525-565, doi:10.4171/Automata. ·Zbl 1543.68172
[32]Laemmel, A. E., Application of lattice-ordered semigroups to codes and finite-state transducers, in Proceedings of the Symposium on Mathematical Theory of Automata, , Polytechnic Press, Brooklyn, NY, 1963, pp. 241-256. ·Zbl 0122.12801
[33]Liu, C. L., Some Memory Aspects of Finite Automata, Ph.D. thesis, MIT Research Laboratory of Electronics, Massachusetts Institute of Technology, 1963, https://dspace.mit.edu/handle/1721.1/4414.
[34]Martyugin, P., Computational complexity of certain problems related to carefully synchronizing words for partial automata and directing words for nondeterministic automata, Theory Comput. Syst., 54 (2014), pp. 293-304, doi:10.1007/s00224-013-9516-6. ·Zbl 1380.68257
[35]Mednykh, A., On the Riemann-Hurwitz formula for regular graph coverings, in Automorphisms of Riemann Surfaces, Subgroups of Mapping Class Groups and Related Topics, , AMS, Providence, RI, 2022, pp. 301-309, doi:10.1090/conm/776/15618.
[36]Nummelin, E., General Irreducible Markov Chains and Nonnegative Operators, , Cambridge University Press, Cambridge, UK, 1984, doi:10.1017/CBO9780511526237. ·Zbl 0551.60066
[37]Olesky, D. D., Shader, B., and van den Driessche, P., Exponents of tuples of nonnegative matrices, Linear Algebra Appl., 356 (2002), pp. 123-134, doi:10.1016/S0024-3795(02)00365-8. ·Zbl 1018.15018
[38]Pin, J.-E., On two combinatorial problems arising from automata theory, in Combinatorial Mathematics, , North-Holland, Amsterdam, 1983, pp. 535-548. ·Zbl 0523.68042
[39]Prasad, A., Representation Theory: A Combinatorial Viewpoint, , Cambridge University Press, Delhi, 2015, doi:10.1017/CBO9781139976824. ·Zbl 1331.20007
[40]Protasov, V. Y., Invariant functionals of random matrices, Funktsional Anal. i Prilozhen, 44 (2010), pp. 84-88, doi:10.1007/s10688-010-0031-0.
[41]Protasov, V. Y., When do several linear operators share an invariant cone?, Linear Algebra Appl., 433 (2010), pp. 781-789, doi:10.1016/j.laa.2010.04.006. ·Zbl 1195.15034
[42]Protasov, V. Y., Classification of k-primitive sets of matrices, SIAM J. Matrix Anal. Appl., 34 (2013), pp. 1174-1188, doi:10.1137/120883414. ·Zbl 1281.15039
[43]Protasov, V. Y., Primitivity and synchronizing automata: A functional analytic approach, in Reachability Problems, Filiot, E., Jungers, R., and Potapov, I., eds., , Springer, Cham, 2019, pp. 13-21, doi:10.1007/978-3-030-30806-3_2. ·Zbl 1515.68166
[44]Protasov, V. Y., Analytic methods for reachability problems, J. Comput. System Sci., 120 (2021), pp. 1-13, doi:10.1016/j.jcss.2021.02.007. ·Zbl 1477.68159
[45]Protasov, V. Y. and Voynov, A. S., Sets of nonnegative matrices without positive products, Linear Algebra Appl., 437 (2012), pp. 749-765, doi:10.1016/j.laa.2012.02.029. ·Zbl 1245.15033
[46]Rystsov, I. K., Asymptotic estimate of the length of a diagnostic word for a finite automaton, Cybernet. Systems Anal., 16 (1980), pp. 194-198, doi:10.1007/BF01069104. ·Zbl 0447.68058
[47]Sachkov, V. N. and Tarakanov, V. E., Combinatorics of Nonnegative Matrices, , AMS, Providence, RI, 2002, doi:10.1090/mmono/213. ·Zbl 1006.05001
[48]Salomaa, A., Parikh matrices: Subword indicators and degrees of ambiguity, in Adventures Between Lower Bounds and Higher Altitudes: Essays Dedicated to Juraj Hromkovič on the Occasion of His 60th Birthday, Böckenhauer, H.-J., Komm, D., and Unger, W., eds., , Springer, Cham, 2018, pp. 100-112, doi:10.1007/978-3-319-98355-4_7. ·Zbl 1398.68015
[49]Seneta, E., Nonnegative Matrices and Markov Chains, , 2nd ed., Springer-Verlag, New York, 1981, doi:10.1007/0-387-32792-4. ·Zbl 0471.60001
[50]Shitov, Y., An improvement to a recent upper bound for synchronizing words of finite automata, J. Autom. Lang. Comb., 24 (2019), pp. 367-373, doi:10.25596/jalc-2019-367. ·Zbl 1447.68007
[51]Stark, H. M. and Terras, A. A., Zeta functions of finite graphs and coverings. II, Adv. Math., 154 (2000), pp. 132-195, doi:10.1006/aima.2000.1917. ·Zbl 0972.11086
[52]Szykuła, M., Improving the upper bound and the length of the shortest reset words, in 35th Symposium on Theoretical Aspects of Computer Science, , , Schloss Dagstuhl, Leibniz Center for Informatics, Wadern, 2018, 56, doi:10.4230/LIPIcs.STACS.2018.56. ·Zbl 1440.68164
[53]Tarjan, R., Depth-first search and linear graph algorithms, SIAM J. Comput., 1 (1972), pp. 146-160, doi:10.1137/0201010. ·Zbl 0251.05107
[54]Trahtman, A. N., The road coloring problem, Israel J. Math., 172 (2009), pp. 51-60, doi:10.1007/s11856-009-0062-5. ·Zbl 1175.05058
[55]Volkov, M. V., Synchronizing automata and the Černý conjecture, in Language and Automata Theory and Applications, , Springer, Berlin, 2008, pp. 11-27, doi:10.1007/978-3-540-88282-4_4. ·Zbl 1156.68466
[56]Voĭnov, A. S., Self-affine polyhedra: Applications to functional equations and matrix theory, Mat. Sb., 202 (2011), pp. 3-30, doi:10.1070/SM2011v202n10ABEH004193. ·Zbl 1251.52006
[57]Voĭnov, A. S. and Protasov, V. Y., Compact noncontraction semigroups of affine operators, Mat. Sb., 206 (2015), pp. 33-54, doi:10.4213/sm8408. ·Zbl 1341.47048
[58]Voynov, A., Shortest positive products of nonnegative matrices, Linear Algebra Appl., 439 (2013), pp. 1627-1634, doi:10.1016/j.laa.2013.04.025. ·Zbl 1283.15111
[59]Wielandt, H., Unzerlegbare, nicht negative matrizen, Math. Z., 52 (1950), pp. 642-648, doi:10.1007/BF02230720. ·Zbl 0035.29101
[60]Wu, Y., Xu, Z., and Zhu, Y., An expansion property of Boolean linear maps, Electron J. Linear Algebra, 31 (2016), pp. 381-407, doi:10.13001/1081-3810.3088. ·Zbl 1339.05164
[61]Wu, Y. and Zhu, Y., Strongly Synchronizing Automata, manuscipt, 2023.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp