[1] | Benner, P. and Breiten, T., Low rank methods for a class of generalized Lyapunov equations and related issues, Numer. Math., 124 (2013), pp. 441-470. ·Zbl 1266.65068 |
[2] | Bickley, W. G. and McNamee, J., Matrix and other direct methods for the solution of linear difference equation, Philos. Trans. Roy. Soc. London Ser. A, 252 (1960), pp. 69-131. ·Zbl 0092.13001 |
[3] | Bünger, A., Simoncini, V., and Stoll, M., A low-rank matrix equation method for solving PDE-constrained optimization problems, SIAM J. Sci. Comput., 43 (2021), pp. S637-S654, doi:10.1137/20M1341210. ·Zbl 1544.65060 |
[4] | Damm, T., Direct methods and ADI-preconditioned Krylov subspace methods for generalized Lyapunov equations, Numer. Linear Algebra Appl., 15 (2008), pp. 853-871. ·Zbl 1212.65175 |
[5] | De Sturler, E., Truncation strategies for optimal Krylov subspace methods, SIAM J. Numer. Anal., 36 (1999), pp. 864-889, doi:10.1137/S0036142997315950. ·Zbl 0960.65031 |
[6] | Ellner, N. S. and Wachspress, E. L., New ADI model problem applications, in Proceedings of the 1986 ACM Fall Joint Computer Conference, , ACM, New York, 1986, pp. 528-534. |
[7] | Golub, G. and Van Loan, C. F., Matrix Computations, 4th ed., The Johns Hopkins University Press, Baltimore, MD, 2013. ·Zbl 1268.65037 |
[8] | Golub, G. H. and Ye, Q., Inexact preconditioned conjugate gradient method with inner-outer iteration, SIAM J. Sci. Comput., 21 (2001), pp. 1305-1320, doi:10.1137/S1064827597323415. ·Zbl 0955.65022 |
[9] | Gratton, S., Simon, E., Titley-Peloquin, D., and Toint, P. L., Minimizing convex quadratics with variable precision conjugate gradients, Numer. Linear Algebra Appl., 28 (2021), e2337. ·Zbl 1549.90093 |
[10] | Greenbaum, A., Behavior of slightly perturbed Lanczos and conjugate-gradient recurrences, Linear Algebra Appl., 113 (1989), pp. 7-63. ·Zbl 0662.65032 |
[11] | Greenbaum, A., Rozložník, M., and Strakoš, Z., Numerical behavior of the modified Gram-Schmidt GMRES implementation, BIT, 37 (1997), pp. 706-719. ·Zbl 0891.65031 |
[12] | Hao, Y. and Simoncini, V., The Sherman-Morrison-Woodbury formula for generalized linear matrix equations and applications, Numer. Linear Algebra Appl., 28 (2021), e2384. ·Zbl 1549.65113 |
[13] | Henning, J., Palitta, D., Simoncini, V., and Urban, K., Matrix oriented reduction of space-time Petrov-Galerkin variational problems, in Numerical Mathematics and Advanced Applications, , Springer, New York, 2021, pp. 1049-1058. ·Zbl 1475.65123 |
[14] | Horn, R. A. and Johnson, C. R., Topics in Matrix Analysis, Cambridge University Press, Cambridge, UK, 1991. ·Zbl 0729.15001 |
[15] | Kressner, D., Plešinger, M., and Tobler, C., A preconditioned low-rank CG method for parameter-dependent Lyapunov equations, Numer. Linear Algebra Appl., 21 (2014), pp. 666-684. ·Zbl 1340.65077 |
[16] | Kressner, D. and Sirković, P., Truncated low-rank methods for solving general linear matrix equations, Numer. Linear Algebra Appl., 22 (2015), pp. 564-583, doi:10.1002/nla.1973. ·Zbl 1363.65075 |
[17] | Kressner, D. and Tobler, C., Krylov subspace methods for linear systems with tensor product structure, SIAM J. Matrix Anal. Appl., 31 (2010), pp. 1688-1714, doi:10.1137/090756843. ·Zbl 1208.65044 |
[18] | Kressner, D. and Tobler, C., Low-rank tensor Krylov subspace methods for parametrized linear systems, SIAM J. Matrix Anal. Appl., 32 (2011), pp. 1288-1316, doi:10.1137/100799010. ·Zbl 1237.65034 |
[19] | Kressner, D. and Uschmajew, A., On low-rank approximability of solutions to high-dimensional operator equations and eigenvalue problems, Linear Algebra Appl., 493 (2016), pp. 556-572. ·Zbl 1336.65093 |
[20] | Lancaster, P., Explicit solutions of linear matrix equations, SIAM Rev., 12 (1970), pp. 544-566, doi:10.1137/1012104. ·Zbl 0209.06502 |
[21] | Liesen, J. and Strakos, Z., Krylov Subspace Methods. Principles and Analysis, Oxford University Press, Oxford, UK, 2013. ·Zbl 1263.65034 |
[22] | Masák, T., Covariance Estimation for Random Surfaces beyond Separability, Ph.D. thesis, Programme doctoral en mathématiques, École polytechnique fédèrale de Lausanne, Lausanne, Switzerland, 2022, N. 9463. |
[23] | MathWorks, Inc., MATLAB 7, r2020b ed., MathWorks, Natick, MA, 2020. |
[24] | Matthies, H. and Zander, E., Solving stochastic systems with low-rank tensor compression, Linear Algebra Appl., 436 (2012), pp. 3819-3838. ·Zbl 1241.65016 |
[25] | Meurant, G. and Strakos, Z., The Lanczos and conjugate gradient algorithms in finite precision arithmetic, Acta Numer., 15 (2006), pp. 471-542. ·Zbl 1113.65032 |
[26] | Morgan, R. B., A restarted GMRES method augmented with eigenvectors, SIAM J. Matrix Anal. Appl., 16 (1995), pp. 1154-1171, doi:10.1137/S0895479893253975. ·Zbl 0836.65050 |
[27] | Notay, Y., Flexible conjugate gradients, SIAM J. Sci. Comput., 22 (2000), pp. 1444-1460, doi:10.1137/S1064827599362314. ·Zbl 0980.65030 |
[28] | Palitta, D. and Kürschner, P., On the convergence of Krylov methods with low-rank truncations, Numer. Algorithms, 88 (2021), pp. 1383-1417, doi:10.1007/s11075-021-01080-2. ·Zbl 1482.65067 |
[29] | Palitta, D. and Simoncini, V., Optimality properties of Galerkin and Petrov-Galerkin methods for linear matrix equations, Vietnam J. Math., 48 (2020), pp. 791-807, doi:10.1007/s10013-020-00390-7. ·Zbl 1466.65031 |
[30] | Penzl, T., Eigenvalue decay bounds for solutions of Lyapunov equations: The symmetric case, Systems Control Lett., 40 (2000), pp. 139-144. ·Zbl 0977.93034 |
[31] | Shank, S. D., Simoncini, V., and Szyld, D. B., Efficient low-rank solutions of generalized Lyapunov equations, Numer. Math., 134 (2016), pp. 327-342. ·Zbl 1348.65078 |
[32] | Simoncini, V., Computational methods for linear matrix equations, SIAM Rev., 58 (2016), pp. 377-441, doi:10.1137/130912839. ·Zbl 1386.65124 |
[33] | Stewart, G. W. and Sun, J.-G., Matrix Perturbation Theory, Academic Press, New York, 1990. ·Zbl 0706.65013 |
[34] | Stoll, M. and Breiten, T., A low-rank in time approach to PDE-constrained optimization, SIAM J. Sci. Comput., 37 (2015), pp. B1-B29, doi:10.1137/130926365. ·Zbl 1330.65153 |
[35] | Strakoš, Z., On the real convergence rate of the conjugate gradient method, Linear Algebra Appl., 154/156 (1991), pp. 535-549. ·Zbl 0732.65021 |
[36] | Vandereycken, B. and Vandewalle, S., A Riemannian optimization approach for computing low-rank solutions of Lyapunov equations, SIAM J. Matrix Anal. Appl., 31 (2010), pp. 2553-2579, doi:10.1137/090764566. ·Zbl 1221.65108 |
[37] | Wachspress, E. L., Extended application of alternating direction implicit iteration model problem theory, J. Soc. Indust. Appl. Math., 11 (1963), pp. 994-1016, doi:10.1137/0111073. ·Zbl 0244.65045 |
[38] | Zhang, J. and Nagy, J. G., An alternating direction method of multipliers for the solution of matrix equations arising in inverse problems, Numer. Linear Algebra Appl., 25 (2018), e2123. ·Zbl 1513.65113 |