Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Analysis of the truncated conjugate gradient method for linear matrix equations.(English)Zbl 1515.65096

Summary: The matrix-oriented version of the conjugate gradient (CG) method can be used to approximate the solution to certain linear matrix equations. To limit memory consumption, low-rank reduction of the factored iterates is often employed, possibly leading to disruption of the regular convergence behavior. We analyze the properties of the method in the matrix regime and identify the quantities that are responsible for early termination, usually stagnation, when truncation is in effect. Moreover, we illustrate relations between CG and a projection technique directly applied to the same matrix equation.

MSC:

65F45 Numerical methods for matrix equations
65F55 Numerical methods for low-rank matrix approximation; matrix compression

Software:

Matlab

Cite

References:

[1]Benner, P. and Breiten, T., Low rank methods for a class of generalized Lyapunov equations and related issues, Numer. Math., 124 (2013), pp. 441-470. ·Zbl 1266.65068
[2]Bickley, W. G. and McNamee, J., Matrix and other direct methods for the solution of linear difference equation, Philos. Trans. Roy. Soc. London Ser. A, 252 (1960), pp. 69-131. ·Zbl 0092.13001
[3]Bünger, A., Simoncini, V., and Stoll, M., A low-rank matrix equation method for solving PDE-constrained optimization problems, SIAM J. Sci. Comput., 43 (2021), pp. S637-S654, doi:10.1137/20M1341210. ·Zbl 1544.65060
[4]Damm, T., Direct methods and ADI-preconditioned Krylov subspace methods for generalized Lyapunov equations, Numer. Linear Algebra Appl., 15 (2008), pp. 853-871. ·Zbl 1212.65175
[5]De Sturler, E., Truncation strategies for optimal Krylov subspace methods, SIAM J. Numer. Anal., 36 (1999), pp. 864-889, doi:10.1137/S0036142997315950. ·Zbl 0960.65031
[6]Ellner, N. S. and Wachspress, E. L., New ADI model problem applications, in Proceedings of the 1986 ACM Fall Joint Computer Conference, , ACM, New York, 1986, pp. 528-534.
[7]Golub, G. and Van Loan, C. F., Matrix Computations, 4th ed., The Johns Hopkins University Press, Baltimore, MD, 2013. ·Zbl 1268.65037
[8]Golub, G. H. and Ye, Q., Inexact preconditioned conjugate gradient method with inner-outer iteration, SIAM J. Sci. Comput., 21 (2001), pp. 1305-1320, doi:10.1137/S1064827597323415. ·Zbl 0955.65022
[9]Gratton, S., Simon, E., Titley-Peloquin, D., and Toint, P. L., Minimizing convex quadratics with variable precision conjugate gradients, Numer. Linear Algebra Appl., 28 (2021), e2337. ·Zbl 1549.90093
[10]Greenbaum, A., Behavior of slightly perturbed Lanczos and conjugate-gradient recurrences, Linear Algebra Appl., 113 (1989), pp. 7-63. ·Zbl 0662.65032
[11]Greenbaum, A., Rozložník, M., and Strakoš, Z., Numerical behavior of the modified Gram-Schmidt GMRES implementation, BIT, 37 (1997), pp. 706-719. ·Zbl 0891.65031
[12]Hao, Y. and Simoncini, V., The Sherman-Morrison-Woodbury formula for generalized linear matrix equations and applications, Numer. Linear Algebra Appl., 28 (2021), e2384. ·Zbl 1549.65113
[13]Henning, J., Palitta, D., Simoncini, V., and Urban, K., Matrix oriented reduction of space-time Petrov-Galerkin variational problems, in Numerical Mathematics and Advanced Applications, , Springer, New York, 2021, pp. 1049-1058. ·Zbl 1475.65123
[14]Horn, R. A. and Johnson, C. R., Topics in Matrix Analysis, Cambridge University Press, Cambridge, UK, 1991. ·Zbl 0729.15001
[15]Kressner, D., Plešinger, M., and Tobler, C., A preconditioned low-rank CG method for parameter-dependent Lyapunov equations, Numer. Linear Algebra Appl., 21 (2014), pp. 666-684. ·Zbl 1340.65077
[16]Kressner, D. and Sirković, P., Truncated low-rank methods for solving general linear matrix equations, Numer. Linear Algebra Appl., 22 (2015), pp. 564-583, doi:10.1002/nla.1973. ·Zbl 1363.65075
[17]Kressner, D. and Tobler, C., Krylov subspace methods for linear systems with tensor product structure, SIAM J. Matrix Anal. Appl., 31 (2010), pp. 1688-1714, doi:10.1137/090756843. ·Zbl 1208.65044
[18]Kressner, D. and Tobler, C., Low-rank tensor Krylov subspace methods for parametrized linear systems, SIAM J. Matrix Anal. Appl., 32 (2011), pp. 1288-1316, doi:10.1137/100799010. ·Zbl 1237.65034
[19]Kressner, D. and Uschmajew, A., On low-rank approximability of solutions to high-dimensional operator equations and eigenvalue problems, Linear Algebra Appl., 493 (2016), pp. 556-572. ·Zbl 1336.65093
[20]Lancaster, P., Explicit solutions of linear matrix equations, SIAM Rev., 12 (1970), pp. 544-566, doi:10.1137/1012104. ·Zbl 0209.06502
[21]Liesen, J. and Strakos, Z., Krylov Subspace Methods. Principles and Analysis, Oxford University Press, Oxford, UK, 2013. ·Zbl 1263.65034
[22]Masák, T., Covariance Estimation for Random Surfaces beyond Separability, Ph.D. thesis, Programme doctoral en mathématiques, École polytechnique fédèrale de Lausanne, Lausanne, Switzerland, 2022, N. 9463.
[23]MathWorks, Inc., MATLAB 7, r2020b ed., MathWorks, Natick, MA, 2020.
[24]Matthies, H. and Zander, E., Solving stochastic systems with low-rank tensor compression, Linear Algebra Appl., 436 (2012), pp. 3819-3838. ·Zbl 1241.65016
[25]Meurant, G. and Strakos, Z., The Lanczos and conjugate gradient algorithms in finite precision arithmetic, Acta Numer., 15 (2006), pp. 471-542. ·Zbl 1113.65032
[26]Morgan, R. B., A restarted GMRES method augmented with eigenvectors, SIAM J. Matrix Anal. Appl., 16 (1995), pp. 1154-1171, doi:10.1137/S0895479893253975. ·Zbl 0836.65050
[27]Notay, Y., Flexible conjugate gradients, SIAM J. Sci. Comput., 22 (2000), pp. 1444-1460, doi:10.1137/S1064827599362314. ·Zbl 0980.65030
[28]Palitta, D. and Kürschner, P., On the convergence of Krylov methods with low-rank truncations, Numer. Algorithms, 88 (2021), pp. 1383-1417, doi:10.1007/s11075-021-01080-2. ·Zbl 1482.65067
[29]Palitta, D. and Simoncini, V., Optimality properties of Galerkin and Petrov-Galerkin methods for linear matrix equations, Vietnam J. Math., 48 (2020), pp. 791-807, doi:10.1007/s10013-020-00390-7. ·Zbl 1466.65031
[30]Penzl, T., Eigenvalue decay bounds for solutions of Lyapunov equations: The symmetric case, Systems Control Lett., 40 (2000), pp. 139-144. ·Zbl 0977.93034
[31]Shank, S. D., Simoncini, V., and Szyld, D. B., Efficient low-rank solutions of generalized Lyapunov equations, Numer. Math., 134 (2016), pp. 327-342. ·Zbl 1348.65078
[32]Simoncini, V., Computational methods for linear matrix equations, SIAM Rev., 58 (2016), pp. 377-441, doi:10.1137/130912839. ·Zbl 1386.65124
[33]Stewart, G. W. and Sun, J.-G., Matrix Perturbation Theory, Academic Press, New York, 1990. ·Zbl 0706.65013
[34]Stoll, M. and Breiten, T., A low-rank in time approach to PDE-constrained optimization, SIAM J. Sci. Comput., 37 (2015), pp. B1-B29, doi:10.1137/130926365. ·Zbl 1330.65153
[35]Strakoš, Z., On the real convergence rate of the conjugate gradient method, Linear Algebra Appl., 154/156 (1991), pp. 535-549. ·Zbl 0732.65021
[36]Vandereycken, B. and Vandewalle, S., A Riemannian optimization approach for computing low-rank solutions of Lyapunov equations, SIAM J. Matrix Anal. Appl., 31 (2010), pp. 2553-2579, doi:10.1137/090764566. ·Zbl 1221.65108
[37]Wachspress, E. L., Extended application of alternating direction implicit iteration model problem theory, J. Soc. Indust. Appl. Math., 11 (1963), pp. 994-1016, doi:10.1137/0111073. ·Zbl 0244.65045
[38]Zhang, J. and Nagy, J. G., An alternating direction method of multipliers for the solution of matrix equations arising in inverse problems, Numer. Linear Algebra Appl., 25 (2018), e2123. ·Zbl 1513.65113
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp