[1] | Akasaka, T.; Kashiwara, M., Finite-dimensional representations of quantum affine algebras, Publ. Res. Inst. Math. Sci., 33, 5, 839-867 (1997) ·Zbl 0915.17011 ·doi:10.2977/prims/1195145020 |
[2] | Assem, I.; Simson, D.; Skowroński, A., Elements of the Representation Theory of Associative Algebras. Vol. 1, London Mathematical Society Student Texts (2006), Cambridge: Cambridge University Press, Cambridge ·Zbl 1092.16001 ·doi:10.1017/CBO9780511614309 |
[3] | Beck, J., Braid group action and quantum affine algebras, Commun. Math. Phys., 165, 3, 555-568 (1994) ·Zbl 0807.17013 ·doi:10.1007/BF02099423 |
[4] | Chari, V., Braid group actions and tensor products, Int. Math. Res. Not., 2002, 7, 357-382 (2002) ·Zbl 0990.17009 ·doi:10.1155/S107379280210612X |
[5] | Chari, V., Pressley, A.: Quantum affine algebras and their representations. In: Representations of Groups (Banff, AB, 1994), CMS Conf. Proc., vol. 16, pp. 59-78. Amer. Math. Soc. Providence (1995) ·Zbl 0855.17009 |
[6] | Chari, V.; Pressley, A., Weyl modules for classical and quantum affine algebras, Represent. Theory, 5, 191-223 (2001) ·Zbl 0989.17019 ·doi:10.1090/S1088-4165-01-00115-7 |
[7] | Chriss, N.; Ginzburg, V., Representation Theory and Complex Geometry (1997), Boston: Birkhauser Boston, Inc., Boston ·Zbl 0879.22001 |
[8] | Date, E.; Okado, M., Calculation of excitation spectra of the spin model related with the vector representation of the quantized affine algebra of type \(A^{(1)}_n\), Int. J. Mod. Phys. A, 9, 3, 399-417 (1994) ·Zbl 0905.17004 ·doi:10.1142/S0217751X94000194 |
[9] | Frenkel, E.; Mukhin, E., Combinatorics of \(q\)-characters of finite-dimensional representations of quantum affine algebras, Commun. Math. Phys., 216, 1, 23-57 (2001) ·Zbl 1051.17013 ·doi:10.1007/s002200000323 |
[10] | Frenkel, E., Reshetikhin, N.: The \(q\)-characters of representations of quantum affine algebras and deformations of \({\cal{W}} \)-algebras. In: Recent Developments in Quantum Affine Algebras and Related Topics (Raleigh, NC, 1998), Contemp. Math., vol. 248, pp. 163-205. Amer. Math. Soc. Providence (1999) ·Zbl 0973.17015 |
[11] | Fujita, R.: Affine highest weight categories and quantum affine Schur-Weyl duality of Dynkin quiver types. Preprint. arXiv:1710.11288 |
[12] | Fujita, R., Geometric realization of Dynkin quiver type quantum affine Schur-Weyl duality, Int. Math. Res. Not. (2018) ·Zbl 1479.16009 ·doi:10.1093/imrn/rny226 |
[13] | Gabriel, P.: Unzerlegbare Darstellungen. I. Manuscr. Math. 6, 71-103 (1972); correction, ibid. 6, 309 (1972) ·Zbl 0232.08001 |
[14] | Gabriel, P.: Auslander-Reiten sequences and representation-finite algebras. In: Representation Theory, I (Proc. Workshop, Carleton Univ., Ottawa, Ont., 1979), Lecture Notes in Math., vol. 831, pp. 1-71. Springer, Berlin (1980) ·Zbl 0445.16023 |
[15] | Ginzburg, V., Reshetikhin, N., Vasserot, E.: Quantum groups and flag varieties. In: Mathematical Aspects of Conformal and Topological Field Theories and Quantum Groups (South Hadley, MA, 1992), Contemp. Math., no. 175, pp. 101-130. Amer. Math. Soc. Providence (1994) ·Zbl 0818.17018 |
[16] | Happel, D., On the derived category of a finite-dimensional algebra, Comment. Math. Helv., 62, 3, 339-389 (1987) ·Zbl 0626.16008 ·doi:10.1007/BF02564452 |
[17] | Happel, D., Triangulated Categories in the Representation Theory of Finite-Dimensional Algebras, London Mathematical Society Lecture Note Series (1988), Cambridge: Cambridge University Press, Cambridge ·Zbl 0635.16017 |
[18] | Hernandez, H.; Leclerc, B., Quantum Grothendieck rings and derived Hall algebras, J. Reine Angew. Math., 701, 77-126 (2015) ·Zbl 1315.17011 |
[19] | Kang, S-J; Kashiwara, M.; Kim, M., Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras, II, Duke Math. J., 164, 8, 1549-1602 (2015) ·Zbl 1323.81046 ·doi:10.1215/00127094-3119632 |
[20] | Kang, S-J; Kashiwara, M.; Kim, M., Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras, Invent. Math., 211, 2, 591-685 (2018) ·Zbl 1407.81108 ·doi:10.1007/s00222-017-0754-0 |
[21] | Kang, S-J; Kashiwara, M.; Kim, M.; Oh, S-J, Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras, III, Proc. Lond. Math. Soc. (3), 111, 2, 420-444 (2015) ·Zbl 1322.81056 ·doi:10.1112/plms/pdv032 |
[22] | Kang, S-J; Kashiwara, M.; Kim, M.; Oh, S-J, Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras, IV, Sel. Math. (N.S.), 22, 4, 1987-2015 (2016) ·Zbl 1354.81030 ·doi:10.1007/s00029-016-0267-5 |
[23] | Kashiwara, M., Crystal bases of modified quantized enveloping algebra, Duke Math. J., 73, 2, 383-413 (1994) ·Zbl 0794.17009 ·doi:10.1215/S0012-7094-94-07317-1 |
[24] | Kashiwara, M., On level-zero representations of quantized affine algebras, Duke Math. J., 112, 1, 117-175 (2002) ·Zbl 1033.17017 ·doi:10.1215/S0012-9074-02-11214-9 |
[25] | Kashiwara, M.; Kim, M.; Oh, S-J, Monoidal categories of modules over quantum affine algebras of type A and B, Proc. Lond. Math. Soc., 118, 43-77 (2019) ·Zbl 1472.17054 ·doi:10.1112/plms.12160 |
[26] | Kashiwara, M., Kim, M., Oh, S.-j., Park, E.: Cluster algebra structures on module categories over quantum affine algebras. Preprint. arXiv:1904.01264 |
[27] | Kashiwara, M.; Oh, S-J, Categorical relations between Langlands dual quantum affine algebras: doubly laced types, J. Algebr. Comb., 49, 4, 401-435 (2019) ·Zbl 1479.17027 ·doi:10.1007/s10801-018-0829-z |
[28] | Kato, S., Poincare-Birkhoff-Witt bases and Khovanov-Lauda-Rouquier algebras, Duke Math. J., 163, 3, 619-663 (2014) ·Zbl 1292.17012 ·doi:10.1215/00127094-2405388 |
[29] | Keller, B.; Scherotzke, S., Graded quiver varieties and derived categories, J. Reine Angew. Math., 713, 85-127 (2016) ·Zbl 1401.14091 |
[30] | Khovanov, M.; Lauda, A., A diagrammatic approach to categorification of quantum groups. I, Represent. Theory, 13, 309-347 (2009) ·Zbl 1188.81117 ·doi:10.1090/S1088-4165-09-00346-X |
[31] | Leclerc, B.; Plamondon, P-G, Nakajima varieties and repetitive algebras, Publ. Res. Inst. Math. Sci., 49, 3, 531-561 (2013) ·Zbl 1285.14050 ·doi:10.4171/PRIMS/112 |
[32] | Nakajima, H., Quiver varieties and finite-dimensional representations of quantum affine algebras, J. Am. Math. Soc., 14, 1, 145-238 (2001) ·Zbl 0981.17016 ·doi:10.1090/S0894-0347-00-00353-2 |
[33] | Nakajima, H., Quiver varieties and tensor products, Invent. Math., 146, 2, 399-449 (2001) ·Zbl 1023.17008 ·doi:10.1007/PL00005810 |
[34] | Nakajima, H.: Extremal weight modules of quantum affine algebras. In: Representation Theory of Algebraic Groups and Quantum Groups, Adv. Stud. Pure Math., vol. 40, pp. 343-369. Math. Soc. Japan, Tokyo (2004) ·Zbl 1088.17008 |
[35] | Oh, S-J, The denominators of normalized \(R\)-matrices of types \(A_{2n-1}^{(2)}, A_{2n}^{(2)}, B_n^{(1)}\) and \(D_{n+1}^{(2)}\), Publ. Res. Inst. Math. Sci., 51, 4, 709-744 (2015) ·Zbl 1337.81080 ·doi:10.4171/PRIMS/170 |
[36] | Oh, S-J; Scrimshaw, T., Categorical relations between Langlands dual quantum affine algebras: exceptional cases, Commun. Math. Phys., 368, 1, 295-367 (2019) ·Zbl 1439.81063 ·doi:10.1007/s00220-019-03287-w |
[37] | Oh, S-J; Scrimshaw, T., Correction to: Categorical relations between Langlands dual quantum affine algebras: exceptional cases, Commun. Math. Phys., 371, 2, 833-837 (2019) ·Zbl 1447.81141 ·doi:10.1007/s00220-019-03570-w |
[38] | Rouquier, R.: 2-Kac-Moody algebras. Preprint. arXiv:0812.5023 |
[39] | Varagnolo, M.; Vasserot, E., Standard modules of quantum affine algebras, Duke Math. J., 111, 3, 509-533 (2002) ·Zbl 1011.17012 ·doi:10.1215/S0012-7094-02-11135-1 |
[40] | Varagnolo, M.; Vasserot, E., Canonical bases and KLR-algebras, J. Reine Angew. Math., 659, 67-100 (2011) ·Zbl 1229.17019 |