Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Graded quiver varieties and singularities of normalized R-matrices for fundamental modules.(English)Zbl 1512.17021

For a complex finite-dimensional simple Lie algebra \(\mathfrak{g}\), consider its untwisted quantum loop algebra \(U_{q}(L\mathfrak{g})\) as a certain quantum affinization of the universal enveloping algebra \(U(\mathfrak{g})\). It is a Hopf algebra defined over \(\mathbf{k} = \overline{\mathbb{Q}(q)}\), where \(q\) is the generic quantum parameter. The structure of the monoidal abelian category \(\mathcal{C}\) of finite-dimensional \(U_{q}(L\mathfrak{g})\)-modules is much more complicated than that of \(U(\mathfrak{g})\). Indeed, the category \(\mathcal{C}\) is neither semisimple as an abelian category, nor braided as a monoidal category.
The normalized \(R\)-matrices are constructed as intertwining operators between tensor products of relatively generic simple objects of the category \(\mathcal{C}\), satisfying the quantum Yang–Baxter equation. They are matrix-valued rational functions in the spectral parameters, whose singularities strongly reflect the structure of tensor product modules, thus the singularities of normalized \(R\)-matrices carry important information on the monoidal structure of \(\mathcal{C}\).
R. Fujita presents a simple unified formula expressing the denominators of the normalized \(R\)-matrices between the fundamental modules over the quantum loop algebras of type \(\mathsf{ADE}\). It has an interpretation in terms of representations of Dynkin quivers and can be proved in a unified way using geometry of the graded quiver varieties. As a by-product, the author obtains a geometric interpretation of generalized quantum affine Schur-Weyl duality functor when it arises from a family of the fundamental modules. He also investigates several cases when the graded quiver varieties are isomorphic to unions of the graded nilpotent orbits of type \(\mathsf{A}\).

MSC:

17B37 Quantum groups (quantized enveloping algebras) and related deformations
17B67 Kac-Moody (super)algebras; extended affine Lie algebras; toroidal Lie algebras
16G20 Representations of quivers and partially ordered sets

Cite

References:

[1]Akasaka, T.; Kashiwara, M., Finite-dimensional representations of quantum affine algebras, Publ. Res. Inst. Math. Sci., 33, 5, 839-867 (1997) ·Zbl 0915.17011 ·doi:10.2977/prims/1195145020
[2]Assem, I.; Simson, D.; Skowroński, A., Elements of the Representation Theory of Associative Algebras. Vol. 1, London Mathematical Society Student Texts (2006), Cambridge: Cambridge University Press, Cambridge ·Zbl 1092.16001 ·doi:10.1017/CBO9780511614309
[3]Beck, J., Braid group action and quantum affine algebras, Commun. Math. Phys., 165, 3, 555-568 (1994) ·Zbl 0807.17013 ·doi:10.1007/BF02099423
[4]Chari, V., Braid group actions and tensor products, Int. Math. Res. Not., 2002, 7, 357-382 (2002) ·Zbl 0990.17009 ·doi:10.1155/S107379280210612X
[5]Chari, V., Pressley, A.: Quantum affine algebras and their representations. In: Representations of Groups (Banff, AB, 1994), CMS Conf. Proc., vol. 16, pp. 59-78. Amer. Math. Soc. Providence (1995) ·Zbl 0855.17009
[6]Chari, V.; Pressley, A., Weyl modules for classical and quantum affine algebras, Represent. Theory, 5, 191-223 (2001) ·Zbl 0989.17019 ·doi:10.1090/S1088-4165-01-00115-7
[7]Chriss, N.; Ginzburg, V., Representation Theory and Complex Geometry (1997), Boston: Birkhauser Boston, Inc., Boston ·Zbl 0879.22001
[8]Date, E.; Okado, M., Calculation of excitation spectra of the spin model related with the vector representation of the quantized affine algebra of type \(A^{(1)}_n\), Int. J. Mod. Phys. A, 9, 3, 399-417 (1994) ·Zbl 0905.17004 ·doi:10.1142/S0217751X94000194
[9]Frenkel, E.; Mukhin, E., Combinatorics of \(q\)-characters of finite-dimensional representations of quantum affine algebras, Commun. Math. Phys., 216, 1, 23-57 (2001) ·Zbl 1051.17013 ·doi:10.1007/s002200000323
[10]Frenkel, E., Reshetikhin, N.: The \(q\)-characters of representations of quantum affine algebras and deformations of \({\cal{W}} \)-algebras. In: Recent Developments in Quantum Affine Algebras and Related Topics (Raleigh, NC, 1998), Contemp. Math., vol. 248, pp. 163-205. Amer. Math. Soc. Providence (1999) ·Zbl 0973.17015
[11]Fujita, R.: Affine highest weight categories and quantum affine Schur-Weyl duality of Dynkin quiver types. Preprint. arXiv:1710.11288
[12]Fujita, R., Geometric realization of Dynkin quiver type quantum affine Schur-Weyl duality, Int. Math. Res. Not. (2018) ·Zbl 1479.16009 ·doi:10.1093/imrn/rny226
[13]Gabriel, P.: Unzerlegbare Darstellungen. I. Manuscr. Math. 6, 71-103 (1972); correction, ibid. 6, 309 (1972) ·Zbl 0232.08001
[14]Gabriel, P.: Auslander-Reiten sequences and representation-finite algebras. In: Representation Theory, I (Proc. Workshop, Carleton Univ., Ottawa, Ont., 1979), Lecture Notes in Math., vol. 831, pp. 1-71. Springer, Berlin (1980) ·Zbl 0445.16023
[15]Ginzburg, V., Reshetikhin, N., Vasserot, E.: Quantum groups and flag varieties. In: Mathematical Aspects of Conformal and Topological Field Theories and Quantum Groups (South Hadley, MA, 1992), Contemp. Math., no. 175, pp. 101-130. Amer. Math. Soc. Providence (1994) ·Zbl 0818.17018
[16]Happel, D., On the derived category of a finite-dimensional algebra, Comment. Math. Helv., 62, 3, 339-389 (1987) ·Zbl 0626.16008 ·doi:10.1007/BF02564452
[17]Happel, D., Triangulated Categories in the Representation Theory of Finite-Dimensional Algebras, London Mathematical Society Lecture Note Series (1988), Cambridge: Cambridge University Press, Cambridge ·Zbl 0635.16017
[18]Hernandez, H.; Leclerc, B., Quantum Grothendieck rings and derived Hall algebras, J. Reine Angew. Math., 701, 77-126 (2015) ·Zbl 1315.17011
[19]Kang, S-J; Kashiwara, M.; Kim, M., Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras, II, Duke Math. J., 164, 8, 1549-1602 (2015) ·Zbl 1323.81046 ·doi:10.1215/00127094-3119632
[20]Kang, S-J; Kashiwara, M.; Kim, M., Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras, Invent. Math., 211, 2, 591-685 (2018) ·Zbl 1407.81108 ·doi:10.1007/s00222-017-0754-0
[21]Kang, S-J; Kashiwara, M.; Kim, M.; Oh, S-J, Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras, III, Proc. Lond. Math. Soc. (3), 111, 2, 420-444 (2015) ·Zbl 1322.81056 ·doi:10.1112/plms/pdv032
[22]Kang, S-J; Kashiwara, M.; Kim, M.; Oh, S-J, Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras, IV, Sel. Math. (N.S.), 22, 4, 1987-2015 (2016) ·Zbl 1354.81030 ·doi:10.1007/s00029-016-0267-5
[23]Kashiwara, M., Crystal bases of modified quantized enveloping algebra, Duke Math. J., 73, 2, 383-413 (1994) ·Zbl 0794.17009 ·doi:10.1215/S0012-7094-94-07317-1
[24]Kashiwara, M., On level-zero representations of quantized affine algebras, Duke Math. J., 112, 1, 117-175 (2002) ·Zbl 1033.17017 ·doi:10.1215/S0012-9074-02-11214-9
[25]Kashiwara, M.; Kim, M.; Oh, S-J, Monoidal categories of modules over quantum affine algebras of type A and B, Proc. Lond. Math. Soc., 118, 43-77 (2019) ·Zbl 1472.17054 ·doi:10.1112/plms.12160
[26]Kashiwara, M., Kim, M., Oh, S.-j., Park, E.: Cluster algebra structures on module categories over quantum affine algebras. Preprint. arXiv:1904.01264
[27]Kashiwara, M.; Oh, S-J, Categorical relations between Langlands dual quantum affine algebras: doubly laced types, J. Algebr. Comb., 49, 4, 401-435 (2019) ·Zbl 1479.17027 ·doi:10.1007/s10801-018-0829-z
[28]Kato, S., Poincare-Birkhoff-Witt bases and Khovanov-Lauda-Rouquier algebras, Duke Math. J., 163, 3, 619-663 (2014) ·Zbl 1292.17012 ·doi:10.1215/00127094-2405388
[29]Keller, B.; Scherotzke, S., Graded quiver varieties and derived categories, J. Reine Angew. Math., 713, 85-127 (2016) ·Zbl 1401.14091
[30]Khovanov, M.; Lauda, A., A diagrammatic approach to categorification of quantum groups. I, Represent. Theory, 13, 309-347 (2009) ·Zbl 1188.81117 ·doi:10.1090/S1088-4165-09-00346-X
[31]Leclerc, B.; Plamondon, P-G, Nakajima varieties and repetitive algebras, Publ. Res. Inst. Math. Sci., 49, 3, 531-561 (2013) ·Zbl 1285.14050 ·doi:10.4171/PRIMS/112
[32]Nakajima, H., Quiver varieties and finite-dimensional representations of quantum affine algebras, J. Am. Math. Soc., 14, 1, 145-238 (2001) ·Zbl 0981.17016 ·doi:10.1090/S0894-0347-00-00353-2
[33]Nakajima, H., Quiver varieties and tensor products, Invent. Math., 146, 2, 399-449 (2001) ·Zbl 1023.17008 ·doi:10.1007/PL00005810
[34]Nakajima, H.: Extremal weight modules of quantum affine algebras. In: Representation Theory of Algebraic Groups and Quantum Groups, Adv. Stud. Pure Math., vol. 40, pp. 343-369. Math. Soc. Japan, Tokyo (2004) ·Zbl 1088.17008
[35]Oh, S-J, The denominators of normalized \(R\)-matrices of types \(A_{2n-1}^{(2)}, A_{2n}^{(2)}, B_n^{(1)}\) and \(D_{n+1}^{(2)}\), Publ. Res. Inst. Math. Sci., 51, 4, 709-744 (2015) ·Zbl 1337.81080 ·doi:10.4171/PRIMS/170
[36]Oh, S-J; Scrimshaw, T., Categorical relations between Langlands dual quantum affine algebras: exceptional cases, Commun. Math. Phys., 368, 1, 295-367 (2019) ·Zbl 1439.81063 ·doi:10.1007/s00220-019-03287-w
[37]Oh, S-J; Scrimshaw, T., Correction to: Categorical relations between Langlands dual quantum affine algebras: exceptional cases, Commun. Math. Phys., 371, 2, 833-837 (2019) ·Zbl 1447.81141 ·doi:10.1007/s00220-019-03570-w
[38]Rouquier, R.: 2-Kac-Moody algebras. Preprint. arXiv:0812.5023
[39]Varagnolo, M.; Vasserot, E., Standard modules of quantum affine algebras, Duke Math. J., 111, 3, 509-533 (2002) ·Zbl 1011.17012 ·doi:10.1215/S0012-7094-02-11135-1
[40]Varagnolo, M.; Vasserot, E., Canonical bases and KLR-algebras, J. Reine Angew. Math., 659, 67-100 (2011) ·Zbl 1229.17019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp