Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

The type I half-logistic family of distributions.(English)Zbl 1510.62114

Summary: We study general mathematical properties of a new class of continuous distributions with an extra positive parameter called the type I half-logistic family. We present some special models and investigate the asymptotics and shapes. The new density function can be expressed as a linear combination of exponentiated densities based on the same baseline distribution. We derive a power series for the quantile function. Explicit expressions for the ordinary and incomplete moments, quantile and generating functions, Bonferroni and Lorenz curves, Shannon and Rényi entropies and order statistics are determined. We introduce a bivariate extension of the new family. We discuss the estimation of the model parameters by maximum likelihood and illustrate its potentiality by means of two applications to real data.

MSC:

62E15 Exact distribution theory in statistics
62E10 Characterization and structure theory of statistical distributions
62N05 Reliability and life testing
62H10 Multivariate distribution of statistics

Cite

References:

[1]Mudholkar GS, Hutson AD. The exponentiated weibull family: some properties and a flood data application. Commun Stat -Theory Methods. 1996;25(12):3059-3083. doi: 10.1080/03610929608831886[Taylor & Francis Online], [Web of Science ®], [Google Scholar] ·Zbl 0887.62019
[2]Gupta RD, Kundu D. Exponentiated exponential family: an alternative to Gamma and Weibull distributions. Biometrical J. 2001;43(1):117-130. doi: 10.1002/1521-4036(200102)43:1<117::AID-BIMJ117>3.0.CO;2-R[Crossref], [Web of Science ®], [Google Scholar] ·Zbl 0997.62076
[3]Nadarajah S, Kotz S. The exponentiated type distributions. Acta Appl Math. 2006;92(2):97-111. doi: 10.1007/s10440-006-9055-0[Crossref], [Web of Science ®], [Google Scholar] ·Zbl 1128.62015
[4]Cordeiro GM, Nadarajah S, et al. Closed-form expressions for moments of a class of beta generalized distributions. Braz J Probab Stat. 2011;25(1):14-33. doi: 10.1214/09-BJPS109[Crossref], [Google Scholar] ·Zbl 1298.60024
[5]Aarts RM. Lauricella functions, a wolfram web resource, created by Eric W. Weisstein, 2000. Available from: http://mathworld.wolfram.com/LauricellaFunctions.html. [Google Scholar]
[6]Prudnikov P, Brychkov A, Marichev OI. Integrals and series: special functions. 1st ed. Vol. 2, Moscow: CRC Press; 1986. [Google Scholar] ·Zbl 0733.00004
[7]Gradshteyn IS, Ryzhik IM. Table of integrals, series, and products. Translated from the Russian. Translation edited and with a preface by Alan Jeffrey and Daniel Zwillinger, 2000. [Google Scholar] ·Zbl 0981.65001
[8]Renyi A. On measures of entropy and information. Fourth Berkeley Symposium on Mathematical Statistics and Probability, 1961. p. 547-561. [Google Scholar] ·Zbl 0106.33001
[9]Shannon CE. Tech. 27 (1948) 379; ce shannon bell syst. Tech. 1948;27:623. [Google Scholar] ·Zbl 1154.94303
[10]Gumbel EJ. Bivariate exponential distributions. J Am Statist Assoc. 1960;55(292):698-707. doi: 10.1080/01621459.1960.10483368[Taylor & Francis Online], [Web of Science ®], [Google Scholar] ·Zbl 0099.14501
[11]Cowan R. A bivariate exponential distribution arising in random geometry. Ann Inst Statist Math. 1987;39(1):103-111. doi: 10.1007/BF02491452[Crossref], [Web of Science ®], [Google Scholar] ·Zbl 0619.60018
[12]Kotz S, Balakrishnan N, Johnson NL. Continuous multivariate distributions, models and applications. 2nd ed. Vol. 1. New York: Wiley; 2004. [Crossref], [Google Scholar] ·Zbl 0946.62001
[13]R Core Team, R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing, 2013. [Google Scholar]
[14]Doornik JA, Ooms M. Introduction to Ox: an object-oriented matrix language, 2007. [Google Scholar]
[15]Bezanson J, Karpinski S, Shah VB, Edelman A. Julia: a fast dynamic language for technical computing, 2012. arXiv preprint arXiv:1209.5145. [Google Scholar] ·Zbl 1356.68030
[16]Smith RL, Naylor JC. A comparison of maximum likelihood and Bayesian estimators for the three-parameter Weibull distribution. Appl Statist. 1987;36(3):358-369. doi: 10.2307/2347795[Crossref], [Web of Science ®], [Google Scholar]
[17]Aarset MV. How to identify a bathtub hazard rate. IEEE Trans Reliab. 1987;36(1):106-108. doi: 10.1109/TR.1987.5222310[Crossref], [Web of Science ®], [Google Scholar] ·Zbl 0625.62092
[18]Silverman BW. Density estimation for statistics and data analysis. 1st ed. New York: CRC Press; 1986. [Crossref], [Google Scholar] ·Zbl 0617.62042
[19]Cordeiro GM, Ortega EMM, Nadarajah S. The Kumaraswamy Weibull distribution with application to failure data. J Franklin Inst. 2010;347(8):1399-1429. doi: 10.1016/j.jfranklin.2010.06.010[Crossref], [Web of Science ®], [Google Scholar] ·Zbl 1202.62018
[20]Kirkpatrick S, Gelatt CD, Vecchi MP. Optimization by simulated annealing. Science. 1983;220(4598):671-680. doi: 10.1126/science.220.4598.671[Crossref], [PubMed], [Web of Science ®], [Google Scholar] ·Zbl 1225.90162
[21]Broyden CG. The convergence of a class of double-rank minimization algorithms 1. General considerations. IMA J Appl. Math. 1970;6(1):76-90. doi: 10.1093/imamat/6.1.76[Crossref], [Google Scholar] ·Zbl 0223.65023
[22]Fletcher R. A new approach to variable metric algorithms. Comput J. 1970;13(3):317-322. doi: 10.1093/comjnl/13.3.317[Crossref], [Web of Science ®], [Google Scholar] ·Zbl 0207.17402
[23]Shanno DF. Conditioning of quasi-Newton methods for function minimization. Math Comput. 1970;24(111):647-656. doi: 10.1090/S0025-5718-1970-0274029-X[Crossref], [Web of Science ®], [Google Scholar] ·Zbl 0225.65073
[24]Chen G, Balakrishnan N. A general purpose approximate goodness-of-fit test. J Qual Technol. 1995;27(2):154-161. [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
[25]Akaike H. A new look at the statistical model identification. IEEE Trans Autom Control. 1974;19(6):716-723. doi: 10.1109/TAC.1974.1100705[Crossref], [Web of Science ®], [Google Scholar] ·Zbl 0314.62039
[26]Schwarz G, et al. Estimating the dimension of a model. Ann Stat. 1978;6(2):461-464. doi: 10.1214/aos/1176344136[Crossref], [Web of Science ®], [Google Scholar] ·Zbl 0379.62005
[27]EJ Hannan, BG Quinn. The determination of the order of an autoregression. J R Statist Soc. Ser B (Methodol). 1979;41(6):190-195. [Google Scholar] ·Zbl 0408.62076
[28]Efron B. Bootstrap methods: another look at the jackknife. Ann Stat. 1979;7(1):1-26. doi: 10.1214/aos/1176344552[Crossref], [Web of Science ®], [Google Scholar] ·Zbl 0406.62024
[29]Efron B, Tibshirani R. An introduction to the bootstrap. 1st ed. Vol. 57. New York: CRC Press; 1993. [Crossref], [Google Scholar] ·Zbl 0835.62038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp