62E15 | Exact distribution theory in statistics |
62E10 | Characterization and structure theory of statistical distributions |
62N05 | Reliability and life testing |
62H10 | Multivariate distribution of statistics |
[1] | Mudholkar GS, Hutson AD. The exponentiated weibull family: some properties and a flood data application. Commun Stat -Theory Methods. 1996;25(12):3059-3083. doi: 10.1080/03610929608831886[Taylor & Francis Online], [Web of Science ®], [Google Scholar] ·Zbl 0887.62019 |
[2] | Gupta RD, Kundu D. Exponentiated exponential family: an alternative to Gamma and Weibull distributions. Biometrical J. 2001;43(1):117-130. doi: 10.1002/1521-4036(200102)43:1<117::AID-BIMJ117>3.0.CO;2-R[Crossref], [Web of Science ®], [Google Scholar] ·Zbl 0997.62076 |
[3] | Nadarajah S, Kotz S. The exponentiated type distributions. Acta Appl Math. 2006;92(2):97-111. doi: 10.1007/s10440-006-9055-0[Crossref], [Web of Science ®], [Google Scholar] ·Zbl 1128.62015 |
[4] | Cordeiro GM, Nadarajah S, et al. Closed-form expressions for moments of a class of beta generalized distributions. Braz J Probab Stat. 2011;25(1):14-33. doi: 10.1214/09-BJPS109[Crossref], [Google Scholar] ·Zbl 1298.60024 |
[5] | Aarts RM. Lauricella functions, a wolfram web resource, created by Eric W. Weisstein, 2000. Available from: http://mathworld.wolfram.com/LauricellaFunctions.html. [Google Scholar] |
[6] | Prudnikov P, Brychkov A, Marichev OI. Integrals and series: special functions. 1st ed. Vol. 2, Moscow: CRC Press; 1986. [Google Scholar] ·Zbl 0733.00004 |
[7] | Gradshteyn IS, Ryzhik IM. Table of integrals, series, and products. Translated from the Russian. Translation edited and with a preface by Alan Jeffrey and Daniel Zwillinger, 2000. [Google Scholar] ·Zbl 0981.65001 |
[8] | Renyi A. On measures of entropy and information. Fourth Berkeley Symposium on Mathematical Statistics and Probability, 1961. p. 547-561. [Google Scholar] ·Zbl 0106.33001 |
[9] | Shannon CE. Tech. 27 (1948) 379; ce shannon bell syst. Tech. 1948;27:623. [Google Scholar] ·Zbl 1154.94303 |
[10] | Gumbel EJ. Bivariate exponential distributions. J Am Statist Assoc. 1960;55(292):698-707. doi: 10.1080/01621459.1960.10483368[Taylor & Francis Online], [Web of Science ®], [Google Scholar] ·Zbl 0099.14501 |
[11] | Cowan R. A bivariate exponential distribution arising in random geometry. Ann Inst Statist Math. 1987;39(1):103-111. doi: 10.1007/BF02491452[Crossref], [Web of Science ®], [Google Scholar] ·Zbl 0619.60018 |
[12] | Kotz S, Balakrishnan N, Johnson NL. Continuous multivariate distributions, models and applications. 2nd ed. Vol. 1. New York: Wiley; 2004. [Crossref], [Google Scholar] ·Zbl 0946.62001 |
[13] | R Core Team, R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing, 2013. [Google Scholar] |
[14] | Doornik JA, Ooms M. Introduction to Ox: an object-oriented matrix language, 2007. [Google Scholar] |
[15] | Bezanson J, Karpinski S, Shah VB, Edelman A. Julia: a fast dynamic language for technical computing, 2012. arXiv preprint arXiv:1209.5145. [Google Scholar] ·Zbl 1356.68030 |
[16] | Smith RL, Naylor JC. A comparison of maximum likelihood and Bayesian estimators for the three-parameter Weibull distribution. Appl Statist. 1987;36(3):358-369. doi: 10.2307/2347795[Crossref], [Web of Science ®], [Google Scholar] |
[17] | Aarset MV. How to identify a bathtub hazard rate. IEEE Trans Reliab. 1987;36(1):106-108. doi: 10.1109/TR.1987.5222310[Crossref], [Web of Science ®], [Google Scholar] ·Zbl 0625.62092 |
[18] | Silverman BW. Density estimation for statistics and data analysis. 1st ed. New York: CRC Press; 1986. [Crossref], [Google Scholar] ·Zbl 0617.62042 |
[19] | Cordeiro GM, Ortega EMM, Nadarajah S. The Kumaraswamy Weibull distribution with application to failure data. J Franklin Inst. 2010;347(8):1399-1429. doi: 10.1016/j.jfranklin.2010.06.010[Crossref], [Web of Science ®], [Google Scholar] ·Zbl 1202.62018 |
[20] | Kirkpatrick S, Gelatt CD, Vecchi MP. Optimization by simulated annealing. Science. 1983;220(4598):671-680. doi: 10.1126/science.220.4598.671[Crossref], [PubMed], [Web of Science ®], [Google Scholar] ·Zbl 1225.90162 |
[21] | Broyden CG. The convergence of a class of double-rank minimization algorithms 1. General considerations. IMA J Appl. Math. 1970;6(1):76-90. doi: 10.1093/imamat/6.1.76[Crossref], [Google Scholar] ·Zbl 0223.65023 |
[22] | Fletcher R. A new approach to variable metric algorithms. Comput J. 1970;13(3):317-322. doi: 10.1093/comjnl/13.3.317[Crossref], [Web of Science ®], [Google Scholar] ·Zbl 0207.17402 |
[23] | Shanno DF. Conditioning of quasi-Newton methods for function minimization. Math Comput. 1970;24(111):647-656. doi: 10.1090/S0025-5718-1970-0274029-X[Crossref], [Web of Science ®], [Google Scholar] ·Zbl 0225.65073 |
[24] | Chen G, Balakrishnan N. A general purpose approximate goodness-of-fit test. J Qual Technol. 1995;27(2):154-161. [Taylor & Francis Online], [Web of Science ®], [Google Scholar] |
[25] | Akaike H. A new look at the statistical model identification. IEEE Trans Autom Control. 1974;19(6):716-723. doi: 10.1109/TAC.1974.1100705[Crossref], [Web of Science ®], [Google Scholar] ·Zbl 0314.62039 |
[26] | Schwarz G, et al. Estimating the dimension of a model. Ann Stat. 1978;6(2):461-464. doi: 10.1214/aos/1176344136[Crossref], [Web of Science ®], [Google Scholar] ·Zbl 0379.62005 |
[27] | EJ Hannan, BG Quinn. The determination of the order of an autoregression. J R Statist Soc. Ser B (Methodol). 1979;41(6):190-195. [Google Scholar] ·Zbl 0408.62076 |
[28] | Efron B. Bootstrap methods: another look at the jackknife. Ann Stat. 1979;7(1):1-26. doi: 10.1214/aos/1176344552[Crossref], [Web of Science ®], [Google Scholar] ·Zbl 0406.62024 |
[29] | Efron B, Tibshirani R. An introduction to the bootstrap. 1st ed. Vol. 57. New York: CRC Press; 1993. [Crossref], [Google Scholar] ·Zbl 0835.62038 |