Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Measuring segregation via analysis on graphs.(English)Zbl 1510.05179

Summary: In this paper, we use analysis on graphs to study quantitative measures of segregation. We focus on a classical statistic from the geography and urban sociology literature known as Moran’sI, which in our language is a score associated to a real-valued function on a graph, computed with respect to a spatial weight matrix such as the adjacency matrix associated to the geographic units that tile a city. Our results characterizing the extremal behavior ofI illustrate the important role of the underlying graph structure, especially the degree distribution, in interpreting the score. In addition to the standard spatial weight matrices encoding unit adjacency, we consider the Laplacian \(L\) and a doubly-stochastic approximation \(M\). These alternatives allow us to connectI to ideas from Fourier analysis and random walks. We offer illustrations of our theoretical results with a mix of stylized synthetic examples and real geographic/demographic data.

MSC:

05C50 Graphs and linear algebra (matrices, eigenvalues, etc.)
65D18 Numerical aspects of computer graphics, image analysis, and computational geometry
68T09 Computational aspects of data analysis and big data
91D30 Social networks; opinion dynamics
05C90 Applications of graph theory

Cite

References:

[1], https://pro.arcgis.com/en/pro-app/tool-reference/spatial-statistics/h-how-spatial-autocorrelation-moran-s-i-spatial-st.htm (accessed 19 December 2021).
[2]Agnew, J. A. and Livingstone, D. N., The Sage Handbook of Geographical Knowledge, Sage Publications, London, 2018.
[3]Alvarez, E., Duchin, M., Meike, E., and Mueller, M., Clustering Propensity: A Mathematical Framework for Measuring Segregation, preprint, 2018, https://mggg.org/publications/capy.pdf.
[4]Anselin, L., Local indicators of spatial association—LISA, Geogr. Anal., 27 (1995), pp. 93-115.
[5]Anselin, L., The Moran scatterplot as an ESDA tool to assess local instability in spatial association, in Spatial Analytical Perspectives on GIS, Routledge, 2019, pp. 111-126.
[6]Anselin, L., Spatial Econometrics: Methods and Models, Vol. 4, Springer, Dordrecht, 2013.
[7]Belkin, M. and Niyogi, P., Convergence of Laplacian eigenmaps, in Advances in Neural Information Processing Systems 19 (NIPS 2006), MIT Press, 2006, pp. 129-136.
[8]Berry, B., Lobley, J., and Marble, D., Spatial Analysis: A Reader in Statistical Geography, Prentice-Hall, Englewood Cliffs, NJ, 1968.
[9]Bhakta, P., Miracle, S., and Randall, D., Clustering and mixing times for segregation models on \(\mathbb{Z}^2\), in Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, , SIAM, 2014, pp. 327-340, doi:10.1137/1.9781611973402.24. ·Zbl 1426.91187
[10]Billera, L. and Diaconis, P., A geometric interpretation of the Metropolis-Hastings algorithm, Statist. Sci., 16 (2001), pp. 335-339. ·Zbl 1127.60310
[11]Chung, F., Spectral Graph Theory, American Mathematical Society, Providence, RI, 1997. ·Zbl 0867.05046
[12]Dawkins, C., Measuring the spatial pattern of residential segregation, Urban Stud., 41 (2004), pp. 833-851.
[13]De Jong, P., Sprenger, C., and Veen, F. V., On extreme values of Moran’s I and Geary’s c, Geogr. Anal., 16 (1984), pp. 17-24.
[14]DeFord, D., Census Dual Graphs for 2010 Census Units, https://people.csail.mit.edu/ddeford/dual_graphs.html.
[15]Desai, M. and Rao, V., A characterization of the smallest eigenvalue of a graph, J. Graph. Theory, 18 (1994), pp. 181-194. ·Zbl 0792.05096
[16]Duchin, M. and Murphy, J., Measuring clustering and segregation, in Political Geometry, Duchin, M. and Walch, O., eds., Birkhäuser, Cham, 2022, pp. 293-302. ·Zbl 1504.91235
[17]Evans, L., Partial Differential Equations, American Mathematical Society, Providence, RI, 1998. ·Zbl 0902.35002
[18]Filoche, M. and Mayboroda, S., Universal mechanism for Anderson and weak localization, Proc. Natl. Acad. Sci. USA, 109 (2012), pp.14761-14766.
[19]Garcia Trillos, N., Hein, M. G. M., and Slepčev, D., Error estimates for spectral convergence of the graph Laplacian on random geometric graphs toward the Laplace-Beltrami operator, Found. Comput. Math., 20 (2020), pp. 827-887. ·Zbl 1447.62141
[20]Garcia Trillos, N. and Slepčev, D., A variational approach to the consistency of spectral clustering, Appl. Comput. Harmon. Anal., 45 (2018), pp. 239-281. ·Zbl 1396.49013
[21]Getis, A., A history of the concept of spatial autocorrelation: A geographer’s perspective, Geogr. Anal., 40 (2008), pp. 297-309.
[22]Getis, A., Spatial weights matrices, Geogr. Anal., 41 (2009), pp. 404-410.
[23]Griffith, D. and Peres-Neto, P., Spatial modeling in ecology: The flexibility of eigenfunction spatial analyses, Ecology, 87 (2006), pp. 2603-2613.
[24]Horn, R. and Johnson, C., Matrix Analysis, Cambridge University Press, New York, 2012.
[25]Ising, E., Beitrag zur Theorie des Ferromagnetismus, Z. Phys., 31 (1925), pp. 253-258. ·Zbl 1439.82056
[26]Legendre, P., Spatial autocorrelation: Trouble or new paradigm?, Ecology, 74 (1993), pp. 1659-1673.
[27]Massey, D. and Denton, N., The dimensions of residential segregation, Soc. Forces, 67 (1988), pp. 281-315.
[28]Moran, P., Notes on continuous stochastic phenomena, Biometrika, 37 (1950), pp. 17-23. ·Zbl 0041.45702
[29]Newman, M., Assortative mixing in networks, Phys. Rev. Lett., 89 (2002), 208701.
[30]Newman, M., Mixing patterns in networks, Phys. Rev. E, 67 (2003), 026126.
[31]Newman, M., The structure and function of complex networks, SIAM Rev., 45 (2003), pp. 167-256, doi:10.1137/S003614450342480. ·Zbl 1029.68010
[32]Newman, M., Networks, Oxford University Press, Oxford, 2018. ·Zbl 1391.94006
[33]Ng, A., Jordan, M., and Weiss, Y., On spectral clustering: Analysis and an algorithm, in Advances in Neural Information Processing Systems 14 (NIPS 2001), MIT Press, 2001, pp. 849-856.
[34]Ortega, A., Frossard, P., Kovačević, J., Moura, J., and Vandergheynst, P., Graph signal processing: Overview, challenges, and applications, Proc. IEEE, 106 (2018), pp. 808-828.
[35]Paouris, G., Concentration of mass on convex bodies, Geom. Funct. Anal., 16 (2006), pp. 1021-1049. ·Zbl 1114.52004
[36]Parlett, B. N., The Symmetric Eigenvalue Problem, SIAM, Philadelphia, 1998, doi:10.1137/1.9781611971163.fm.
[37]Roberts, B. R. and Wilson, R. H., Urban Segregation and Governance in the Americas, Palgrave Macmillan, New York, 2009.
[38]Schelling, T., Dynamic models of segregation, J. Math. Sociol., 1 (1971), pp. 143-186. ·Zbl 1355.91061
[39]Cliff, A. D. and Ord, J. K., The problem of spatial autocorrelation, in Studies in Regional Science, Scott, A. J. ed., Pion, London, 1969, pp. 25-55.
[40]Shi, J. and Malik, J., Normalized cuts and image segmentation, IEEE Trans. Pattern Anal. Mach. Intell., 22 (2000), pp. 888-905.
[41]Shuman, D., Narang, S., Frossard, P., Ortega, A., and Vandergheynst, P., The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains, IEEE Signal Process. Mag., 30 (2013), pp. 83-98.
[42]Spielman, D. A. and Teng, S.-H., Spectral partitioning works: Planar graphs and finite element meshes, in 37th Annual Symposium on Foundations of Computer Science (Burlington, VT, 1996), , IEEE Comput. Soc. Press, Los Alamitos, CA, 1996, pp. 96-105, doi:10.1109/SFCS.1996.548468.
[43]Tiefelsdorf, M. and Boots, B., The exact distribution of Moran’s I, Environ. Plann. A, 27 (1995), pp. 985-999.
[44]Tiefelsdorf, M. and Griffith, D., Semiparametric filtering of spatial autocorrelation: The eigenvector approach, Environ. Plann. A, 39 (2007), pp. 1193-1221.
[45]Urschel, J. C., Nodal decompositions of graphs, Linear Algebra Appl., 539 (2018), pp. 60-71, doi:10.1016/j.laa.2017.11.003. ·Zbl 1377.05154
[46]Van Loan, C. F. and Golub, G., Matrix Computations, The Johns Hopkins University Press, Baltimore, 1996. ·Zbl 0865.65009
[47]Von Luxburg, U., A tutorial on spectral clustering, Statist. Comput., 17 (2007), pp. 395-416.
[48]Zhao, Z. and Randall, D., A Heterogeneous Schelling Model for Wealth Disparity and Its Effect on Segregation, preprint, https://arxiv.org/abs/2108.01657v2, 2022.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp