[1] | , https://pro.arcgis.com/en/pro-app/tool-reference/spatial-statistics/h-how-spatial-autocorrelation-moran-s-i-spatial-st.htm (accessed 19 December 2021). |
[2] | Agnew, J. A. and Livingstone, D. N., The Sage Handbook of Geographical Knowledge, Sage Publications, London, 2018. |
[3] | Alvarez, E., Duchin, M., Meike, E., and Mueller, M., Clustering Propensity: A Mathematical Framework for Measuring Segregation, preprint, 2018, https://mggg.org/publications/capy.pdf. |
[4] | Anselin, L., Local indicators of spatial association—LISA, Geogr. Anal., 27 (1995), pp. 93-115. |
[5] | Anselin, L., The Moran scatterplot as an ESDA tool to assess local instability in spatial association, in Spatial Analytical Perspectives on GIS, Routledge, 2019, pp. 111-126. |
[6] | Anselin, L., Spatial Econometrics: Methods and Models, Vol. 4, Springer, Dordrecht, 2013. |
[7] | Belkin, M. and Niyogi, P., Convergence of Laplacian eigenmaps, in Advances in Neural Information Processing Systems 19 (NIPS 2006), MIT Press, 2006, pp. 129-136. |
[8] | Berry, B., Lobley, J., and Marble, D., Spatial Analysis: A Reader in Statistical Geography, Prentice-Hall, Englewood Cliffs, NJ, 1968. |
[9] | Bhakta, P., Miracle, S., and Randall, D., Clustering and mixing times for segregation models on \(\mathbb{Z}^2\), in Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, , SIAM, 2014, pp. 327-340, doi:10.1137/1.9781611973402.24. ·Zbl 1426.91187 |
[10] | Billera, L. and Diaconis, P., A geometric interpretation of the Metropolis-Hastings algorithm, Statist. Sci., 16 (2001), pp. 335-339. ·Zbl 1127.60310 |
[11] | Chung, F., Spectral Graph Theory, American Mathematical Society, Providence, RI, 1997. ·Zbl 0867.05046 |
[12] | Dawkins, C., Measuring the spatial pattern of residential segregation, Urban Stud., 41 (2004), pp. 833-851. |
[13] | De Jong, P., Sprenger, C., and Veen, F. V., On extreme values of Moran’s I and Geary’s c, Geogr. Anal., 16 (1984), pp. 17-24. |
[14] | DeFord, D., Census Dual Graphs for 2010 Census Units, https://people.csail.mit.edu/ddeford/dual_graphs.html. |
[15] | Desai, M. and Rao, V., A characterization of the smallest eigenvalue of a graph, J. Graph. Theory, 18 (1994), pp. 181-194. ·Zbl 0792.05096 |
[16] | Duchin, M. and Murphy, J., Measuring clustering and segregation, in Political Geometry, Duchin, M. and Walch, O., eds., Birkhäuser, Cham, 2022, pp. 293-302. ·Zbl 1504.91235 |
[17] | Evans, L., Partial Differential Equations, American Mathematical Society, Providence, RI, 1998. ·Zbl 0902.35002 |
[18] | Filoche, M. and Mayboroda, S., Universal mechanism for Anderson and weak localization, Proc. Natl. Acad. Sci. USA, 109 (2012), pp.14761-14766. |
[19] | Garcia Trillos, N., Hein, M. G. M., and Slepčev, D., Error estimates for spectral convergence of the graph Laplacian on random geometric graphs toward the Laplace-Beltrami operator, Found. Comput. Math., 20 (2020), pp. 827-887. ·Zbl 1447.62141 |
[20] | Garcia Trillos, N. and Slepčev, D., A variational approach to the consistency of spectral clustering, Appl. Comput. Harmon. Anal., 45 (2018), pp. 239-281. ·Zbl 1396.49013 |
[21] | Getis, A., A history of the concept of spatial autocorrelation: A geographer’s perspective, Geogr. Anal., 40 (2008), pp. 297-309. |
[22] | Getis, A., Spatial weights matrices, Geogr. Anal., 41 (2009), pp. 404-410. |
[23] | Griffith, D. and Peres-Neto, P., Spatial modeling in ecology: The flexibility of eigenfunction spatial analyses, Ecology, 87 (2006), pp. 2603-2613. |
[24] | Horn, R. and Johnson, C., Matrix Analysis, Cambridge University Press, New York, 2012. |
[25] | Ising, E., Beitrag zur Theorie des Ferromagnetismus, Z. Phys., 31 (1925), pp. 253-258. ·Zbl 1439.82056 |
[26] | Legendre, P., Spatial autocorrelation: Trouble or new paradigm?, Ecology, 74 (1993), pp. 1659-1673. |
[27] | Massey, D. and Denton, N., The dimensions of residential segregation, Soc. Forces, 67 (1988), pp. 281-315. |
[28] | Moran, P., Notes on continuous stochastic phenomena, Biometrika, 37 (1950), pp. 17-23. ·Zbl 0041.45702 |
[29] | Newman, M., Assortative mixing in networks, Phys. Rev. Lett., 89 (2002), 208701. |
[30] | Newman, M., Mixing patterns in networks, Phys. Rev. E, 67 (2003), 026126. |
[31] | Newman, M., The structure and function of complex networks, SIAM Rev., 45 (2003), pp. 167-256, doi:10.1137/S003614450342480. ·Zbl 1029.68010 |
[32] | Newman, M., Networks, Oxford University Press, Oxford, 2018. ·Zbl 1391.94006 |
[33] | Ng, A., Jordan, M., and Weiss, Y., On spectral clustering: Analysis and an algorithm, in Advances in Neural Information Processing Systems 14 (NIPS 2001), MIT Press, 2001, pp. 849-856. |
[34] | Ortega, A., Frossard, P., Kovačević, J., Moura, J., and Vandergheynst, P., Graph signal processing: Overview, challenges, and applications, Proc. IEEE, 106 (2018), pp. 808-828. |
[35] | Paouris, G., Concentration of mass on convex bodies, Geom. Funct. Anal., 16 (2006), pp. 1021-1049. ·Zbl 1114.52004 |
[36] | Parlett, B. N., The Symmetric Eigenvalue Problem, SIAM, Philadelphia, 1998, doi:10.1137/1.9781611971163.fm. |
[37] | Roberts, B. R. and Wilson, R. H., Urban Segregation and Governance in the Americas, Palgrave Macmillan, New York, 2009. |
[38] | Schelling, T., Dynamic models of segregation, J. Math. Sociol., 1 (1971), pp. 143-186. ·Zbl 1355.91061 |
[39] | Cliff, A. D. and Ord, J. K., The problem of spatial autocorrelation, in Studies in Regional Science, Scott, A. J. ed., Pion, London, 1969, pp. 25-55. |
[40] | Shi, J. and Malik, J., Normalized cuts and image segmentation, IEEE Trans. Pattern Anal. Mach. Intell., 22 (2000), pp. 888-905. |
[41] | Shuman, D., Narang, S., Frossard, P., Ortega, A., and Vandergheynst, P., The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains, IEEE Signal Process. Mag., 30 (2013), pp. 83-98. |
[42] | Spielman, D. A. and Teng, S.-H., Spectral partitioning works: Planar graphs and finite element meshes, in 37th Annual Symposium on Foundations of Computer Science (Burlington, VT, 1996), , IEEE Comput. Soc. Press, Los Alamitos, CA, 1996, pp. 96-105, doi:10.1109/SFCS.1996.548468. |
[43] | Tiefelsdorf, M. and Boots, B., The exact distribution of Moran’s I, Environ. Plann. A, 27 (1995), pp. 985-999. |
[44] | Tiefelsdorf, M. and Griffith, D., Semiparametric filtering of spatial autocorrelation: The eigenvector approach, Environ. Plann. A, 39 (2007), pp. 1193-1221. |
[45] | Urschel, J. C., Nodal decompositions of graphs, Linear Algebra Appl., 539 (2018), pp. 60-71, doi:10.1016/j.laa.2017.11.003. ·Zbl 1377.05154 |
[46] | Van Loan, C. F. and Golub, G., Matrix Computations, The Johns Hopkins University Press, Baltimore, 1996. ·Zbl 0865.65009 |
[47] | Von Luxburg, U., A tutorial on spectral clustering, Statist. Comput., 17 (2007), pp. 395-416. |
[48] | Zhao, Z. and Randall, D., A Heterogeneous Schelling Model for Wealth Disparity and Its Effect on Segregation, preprint, https://arxiv.org/abs/2108.01657v2, 2022. |