Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Maximal subgroups of small index of finite almost simple groups.(English)Zbl 1509.20043

All groups under consideration are finite.
An almost simple group \(R\) is a subgroup of \(\operatorname{Aut}(S)\) for some simple group \(S\), such that \(S\leq R\). If \(S\) is a non-abelian simple group, then the socle of \(R\) is \(S\). Let \(l(X)\) be the smallest index of a core-free subgroup of a group \(X\).
In the paper under review, the authors prove that every almost simple group \(R\) with socle isomorphic to a simple group \(S\) possesses a conjugacy class of core-free maximal subgroups whose index coincides with the smallest index \(l(S)\) of a maximal subgroup of \(S\) or a conjugacy class of core-free maximal subgroups with a fixed index \(v_S\leq l(S)^2\), depending only on \(S\).
In addition, it is argued that if \(S\) is a non-abelian simple group, then \(l(S)^2<|S|\) and the number of subgroups of the outer automorphism group of \(S\) is bounded by \(\log_2^3 l(S)\).
All results largely depend on the classification of finite simple groups.

MSC:

20E28 Maximal subgroups
20D05 Finite simple groups and their classification
20B15 Primitive groups

Cite

References:

[1]Baer, R., Classes of finite groups and their properties, Illinois J. Math., 1, 115-187 (1957) ·Zbl 0077.03003 ·doi:10.1215/IJM/1255379396
[2]Ballester-Bolinches, A., Ezquerro, L.M.: Classes of Finite Groups. Mathematics and Its Applications, vol. 584. Springer, Dordrecht (2006). doi:10.1007/1-4020-4719-3 ·Zbl 1102.20016
[3]Ballester-Bolinches, A.; Esteban-Romero, R.; Jiménez-Seral, P., Bounds on the number of maximal subgroups of finite groups: applications, Mathematics, 10, 1153-25 (2022) ·Zbl 1522.20062 ·doi:10.3390/math10071153
[4]Borovik, AV; Pyber, L.; Shalev, A., Maximal subgroups in finite and profinite groups, Trans. Amer. Math. Soc., 348, 9, 3745-3761 (1996) ·Zbl 0866.20018 ·doi:10.1090/S0002-9947-96-01665-0
[5]Guralnick, RM; Maróti, A.; Pyber, L., Normalizers of primitive permutation groups, Adv. Math., 310, 1017-1063 (2017) ·Zbl 1414.20002 ·doi:10.1016/j.aim.2017.02.012
[6]Conway, JH; Curtis, RT; Norton, SP; Parker, RA; Wilson, RA, Atlas of Finite Groups (1985), London: Oxford Univ. Press, London ·Zbl 0568.20001
[7]Doerk, K., Hawkes, T.: Finite Soluble Groups. De Gruyter Expositions in Mathematics, vol. 4, p. 891. Walter de Gruyter & Co., Berlin (1992). doi:10.1515/9783110870138 ·Zbl 0753.20001
[8]Mazurov, V.D.: Minimal permutation representations of finite simple classical groups. Special linear, symplectic, and unitary groups. Algebra Logic 32(3), 142-153 (1993). doi:10.1007/BF02261693 ·Zbl 0854.20017
[9]Vasil’ev, VA; Mazurov, VD, Minimal permutation representations of finite simple orthogonal groups, Algebra Logic, 33, 6, 1994 (1994) ·Zbl 0842.20015 ·doi:10.1007/BF00756348
[10]Vasilyev, AV, Minimal permutation representations of finite simple exceptional groups of types \({G}_4\) and \({F}_4\), Algebra Logic, 35, 6, 371-383 (1996) ·Zbl 0880.20006 ·doi:10.1007/BF02366397
[11]Vasilyev, AV, Minimal permutation representations of finite simple exceptional groups of types \({E}_6, {E}_7\), and \({E}_8\), Algebra Logic, 36, 5, 302-310 (1997) ·Zbl 0941.20006 ·doi:10.1007/bf02671607
[12]Vasilyev, AV, Minimal permutation representations of finite simple exceptional twisted groups, Algebra Logic, 37, 1, 9-20 (1998) ·Zbl 0941.20007 ·doi:10.1007/BF02684081
[13]Linton, SA; Wilson, RA, The maximal subgroups of the Fischer groups \({{{F}i}_{24}}\) and \({{{F}i}_{24}^{\prime }}\), Proc. Lond. Math. Soc., 3, 63, 113-164 (1991) ·Zbl 0695.20016 ·doi:10.1112/plms/s3-63.1.113
[14]Wilson, RA, The maximal subgroups of the Baby Monster, I. J. Algebra, 211, 1-14 (1999) ·Zbl 0916.20010 ·doi:10.1006/jabr.1998.7601
[15]Wilson, R.A.: New computations in the Monster. In: Lepowsky, J., McKay, J., Tuite, M.P. (eds.) Moonshine: the First Quarter Century and Beyond. London Math. Soc. Lecture Note Ser., vol. 372, pp. 393-403. Cambridge Univ. Press, Cambridge (2010) ·Zbl 1208.20014
[16]Norton, SP; Wilson, RA, A correction to the \(41\)-structure of the Monster, a construction of a new maximal subgroup \({\rm L_2(41)}\) and a new Moonshine phenomenon, J. Lond. Math. Soc., 2, 87, 943-962 (2013) ·Zbl 1281.20019 ·doi:10.1112/jlms/jds078
[17]Bray, J., Holt, D., Roney-Dougal, C.: The Maximal Subgroups of the Low-dimensional Finite Classical Groups. London Math. Soc. Lect. Note Ser., vol. 407. Cambridge Univ. Press, Cambridge, UK (2013). doi:10.1017/CBO9781139192576 ·Zbl 1303.20053
[18]Kleidman, P.B., Liebeck, M.W.: The Subgroup Structure of the Finite Classical Groups. London Math. Soc. Lecture Notes Series, vol. 129. Cambridge Univ. Press, Cambridge, UK (1990). doi:10.1017/CBO9780511629235 ·Zbl 0697.20004
[19]Liebeck, MW; Saxl, J.; Seitz, GM, Subgroups of maximal rank in finite exceptional groups of Lie type, Proc. London Math. Soc., 3, 65, 297-325 (1992) ·Zbl 0776.20012 ·doi:10.1112/plms/s3-65.2.297
[20]Craven, D.A.: The maximal subgroups of the exceptional groups \({F}_4(q), E_6(q)\) and \({}^2\!{E}_6(q)\) and related almost simple groups. 10.48550
[21]Alavi, SH; Burness, TC, Large subgroups of simple groups, J. Algebra, 421, 187-233 (2015) ·Zbl 1308.20012 ·doi:10.1016/j.jalgebra.2014.08.026
[22]Kleidman, PB, The maximal subgroups of the finite \(8\)-dimensional orthogonal groups \(P\Omega^+(q)\) and of their automorphism groups, J. Algebra, 110, 1, 173-242 (1987) ·Zbl 0623.20031 ·doi:10.1016/0021-8693(87)90042-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp