[1] | Bayer, A.; Macri, E.; Stellari, P., The space of stability conditions on abelian threefolds, and on some Calabi-Yau threefolds, Invent. Math., 206, 3, 869-933 (2016) ·Zbl 1360.14057 |
[2] | Beauville, A., Some remarks on Kähler manifolds with \(c_1 = 0\), (Ueno, K., Classification of Algebraic and Analytic Manifolds. Classification of Algebraic and Analytic Manifolds, Progress Math., vol. 39 (1983)), 1-26 ·Zbl 0537.53057 |
[3] | Bridgeland, T., Flops and derived categories, Invent. Math., 147, 613-632 (2002) ·Zbl 1085.14017 |
[4] | Bridgeland, T., Stability conditions on triangulated categories, Ann. Math. (2), 166, 2, 317-345 (2007) ·Zbl 1137.18008 |
[5] | Bridgeland, T., Stability conditions on K3 surfaces, Duke Math. J., 141, 2, 241-291 (2008) ·Zbl 1138.14022 |
[6] | Candelas, P.; de la Ossa, X.; Elmi, M.; van Straten, D., A one parameter family of Calabi-Yau manifolds with attractor points of rank two, J. High Energy Phys., 202 (2020) ·Zbl 1456.83089 |
[7] | Cox, D. A.; Katz, S., Mirror Symmetry and Algebraic Geometry, Mathematical Surveys and Monographs, vol. 68 (1999), American Mathematical Society: American Mathematical Society Providence, RI ·Zbl 0951.14026 |
[8] | Dolgachev, I., Mirror symmetry for lattice polarized K3 surfaces, J. Math. Sci., 81, 3, 2599-2630 (1996), Algebraic geometry, 4 ·Zbl 0890.14024 |
[9] | Fan, Y.-W.; Kanazawa, A.; Yau, S.-T., Weil-Petersson geometry on the space of Bridgeland stability conditions, Commun. Anal. Geom., 29, 3, 681-706 (2021) ·Zbl 1464.32037 |
[10] | Ferrara, S.; Kallosh, R.; Strominger, A., \(N = 2\) extremal black holes, Phys. Rev. D, 52, 5412-5416 (1995) |
[11] | Hitchin, N., Generalized Calabi-Yau manifolds, Q. J. Math. Oxf. Ser., 54, 281-308 (2003) ·Zbl 1076.32019 |
[12] | Hosono, S., Central charges, symplectic forms, and hypergeometric series in local mirror symmetry, (Mirror Symmetry. V. Mirror Symmetry. V, AMS/IP Stud. Adv. Math., vol. 38 (2006), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 405-439 ·Zbl 1114.14025 |
[13] | Hulek, K.; Laface, R., On the Picard numbers of abelian varieties, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 19, 3, 1199-1224 (2019) ·Zbl 1429.14026 |
[14] | Huybrechts, D., Generalized Calabi-Yau structures, K3 surfaces, and B-fields, Int. J. Math., 16, 13-36 (2005) ·Zbl 1120.14027 |
[15] | Iritani, H., An integral structure in quantum cohomology and mirror symmetry for toric orbifolds, Adv. Math., 222, 1016-1079 (2009) ·Zbl 1190.14054 |
[16] | Kanazawa, A., Mirror symmetry and rigid structures of generalized K3 surfaces ·Zbl 07966477 |
[17] | Kanazawa, A.; Lau, S.-C., Local Calabi-Yau manifolds of \(\widetilde{A}\) via SYZ mirror symmetry, J. Geom. Phys., 139, 103-138 (2019) ·Zbl 1417.53094 |
[18] | Katzarkov, L.; Kontsevich, M.; Pantev, T., Hodge theoretic aspects of mirror symmetry, (From Hodge Theory to Integrability and TQFT \(t t^\ast \)-Geometry. From Hodge Theory to Integrability and TQFT \(t t^\ast \)-Geometry, Proc. Sympos. Pure Math., vol. 78 (2008), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 87-174 ·Zbl 1206.14009 |
[19] | Kontsevich, M.; Soibelman, Y., Stability structures, motivic Donaldson-Thomas invariants and cluster transformations ·Zbl 1202.81120 |
[20] | Lam, J., The attractor conjecture for Calabi-Yau variations of Hodge structures |
[21] | Lam, J.; Tripathy, A., Attractors are not algebraic ·Zbl 07843781 |
[22] | Li, C., On stability conditions for the quintic threefold, Invent. Math., 218, 301-340 (2019) ·Zbl 1431.14010 |
[23] | Moore, G., Arithmetic and attractors |
[24] | Shioda, T.; Inose, H., On singular K3 surfaces, (Complex Analysis and Algebraic Geometry (1977), Cambridge University Press: Cambridge University Press Cambridge) ·Zbl 0374.14006 |
[25] | Tian, G., Smoothness of the universal deformation space of compact Calabi-Yau manifolds and its Petersson-Weil metric, (Mathematical Aspects of String Theory. Mathematical Aspects of String Theory, San Diego, Calif., 1986. Mathematical Aspects of String Theory. Mathematical Aspects of String Theory, San Diego, Calif., 1986, Adv. Ser. Math. Phys., vol. 1 (1987), World Sci. Publishing: World Sci. Publishing Singapore), 629-646 ·Zbl 0696.53040 |
[26] | Todorov, A. N., The Weil-Petersson geometry of the moduli space of \(\operatorname{SU}(n \geq 3)\) (Calabi-Yau) manifolds. I, Commun. Math. Phys., 126, 2, 325-346 (1989) ·Zbl 0688.53030 |
[27] | Trenner, T.; Wilson, P. M.H., Asymptotic curvature of moduli spaces for Calabi-Yau threefolds, J. Geom. Anal., 21, 2, 409-428 (2011) ·Zbl 1226.14055 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.