[1] | Agmon, S.: Spectral properties of Schrödinger operators and scattering theory. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 2(2), 151-218 (1975) ·Zbl 0315.47007 |
[2] | Ben-Artzi, M., Koch, H., Saut, J.: Dispersion estimates for fourth order Schroödinger equations. C. R. Acad. Sci. Paris \(S \acute{e}\) r. I Math., 330(1), 87-92 (2000) ·Zbl 0942.35160 |
[3] | Birman, M.S., Solomyak, M.Z.: Estimates for the number of negative eigenvalues of the Schrödinger operator and its generalizations, estimates and asymptotics for discrete spectra of integral and differential equations (Leningrad, 1989-90), Adv. Soviet Math., vol. 7, American Mathematical Society, Providence, RI, pp. 1-55 (1991) ·Zbl 0749.35026 |
[4] | Bourgain, J.: Global solutions of nonlinear Schrödinger equations. American Mathematical Society Colloquium Publications, 46. American Mathematical Society, Providence, RI (1999) ·Zbl 0933.35178 |
[5] | Cazenave, T.: Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, vol. 10. New York; American Mathematical Society, Providence, RI, New York University, Courant Institute of Mathematical Sciences (2003) ·Zbl 1055.35003 |
[6] | Chen, W.; Miao, C.; Yao, X., Dispersive estimates with geometry of finite type, Commun. Partial Differ. Equ., 37, 479-510 (2012) ·Zbl 1248.35033 ·doi:10.1080/03605302.2011.641053 |
[7] | Costin, O.; Soffer, A., Resonance theory for Schrödinger operators, Commun. Math. Phys., 224, 1, 133-152 (2001) ·Zbl 0992.81025 ·doi:10.1007/s002200100558 |
[8] | Davies, EB, Limits on \(L^p\) regularity of self-adjoint elliptic operators, J. Differ. Equ., 135, 1, 83-102 (1997) ·Zbl 0871.35020 ·doi:10.1006/jdeq.1996.3219 |
[9] | Deng, Q.; Ding, Y.; Yao, X., Gaussian bounds for higher-order elliptic differential operators with Kato type potentials, J. Funct. Anal., 266, 8, 5377-5397 (2014) ·Zbl 1296.47037 ·doi:10.1016/j.jfa.2014.02.014 |
[10] | Deift, PA; Trubowitz, E., Inverse scattering on the line, Commun. Pure Appl. Math., 32, 2, 121-251 (1979) ·Zbl 0388.34005 ·doi:10.1002/cpa.3160320202 |
[11] | Davies, EB; Hinz, AM, Kato class potentials for higher order elliptic operators, J. Lond. Math. Soc. (2), 58, 3, 669-678 (1998) ·Zbl 0942.35063 ·doi:10.1112/S0024610798006565 |
[12] | Erdoğan, MB; Green, WR; Toprak, E., On the fourth order schrödinger equation in three dimensions: dispersive estimates and zero energy resonance, J. Differ. Equ., 271, 152-185 (2021) ·Zbl 1455.35212 ·doi:10.1016/j.jde.2020.08.019 |
[13] | Egorova, IE; Kopylova, EA; Marchenko, VA; Teschl, G., On the sharpening of dispersion estimates for one-dimensional Schrödinger and Klein-Gordon equations, Russ. Math. Surv., 71, 3, 391-415 (2016) ·Zbl 1353.35081 ·doi:10.1070/RM9708 |
[14] | Erdoğan, MB; Schlag, W., Dispersive estimates for Schrödinger operators in the presence of a resonance and/or an eigenvalue at zero energy in dimension three, I, Dyn. Partial Differ. Equ., 1, 4, 359-379 (2004) ·Zbl 1080.35102 ·doi:10.4310/DPDE.2004.v1.n4.a1 |
[15] | Erdoğan, MB; Schlag, W., Dispersive estimates for Schrödinger operators in the presence of a resonance and/or an eigenvalue at zero energy in dimension three. II, J. Anal. Math., 99, 199-248 (2006) ·Zbl 1146.35324 ·doi:10.1007/BF02789446 |
[16] | Feng, H.; Soffer, A.; Yao, X., Decay estimates and Strichartz estimates of fourth-order Schrödinger operator, J. Funct. Anal., 274, 2, 605-658 (2018) ·Zbl 1379.58013 ·doi:10.1016/j.jfa.2017.10.014 |
[17] | Feng, H.; Soffer, A.; Wu, Z.; Yao, X., Decay estimates for higher-order elliptic operators, Trans. Am. Math. Soc., 373, 4, 2805-2859 (2020) ·Zbl 1440.35054 ·doi:10.1090/tran/8010 |
[18] | Feng, H., Wu, Z., Yao, X.: Time asymptotic expansions of solution for fourth-order schrödinger equation with zero resonance or eigenvalue. arxiv: 1812.00223 (2018) |
[19] | Goldberg, M.: In private communication |
[20] | Goldberg, M.; Green, WR, Dispersive estimates for higher dimensional Schrödinger operators with threshold eigenvalues I: the odd dimensional case, J. Funct. Anal., 269, 3, 633-682 (2015) ·Zbl 1317.35216 ·doi:10.1016/j.jfa.2015.04.004 |
[21] | Goldberg, M.; Green, WR, Dispersive estimates for higher dimensional Schrödinger operators with threshold eigenvalues II. The even dimensional case, J. Spectr. Theory, 7, 1, 33-86 (2017) ·Zbl 1372.35261 ·doi:10.4171/JST/155 |
[22] | Goldberg, M.; Schlag, W., Dispersive estimates for Schrödinger operators in dimensions one and three, Commun. Math. Phys., 251, 1, 157-178 (2004) ·Zbl 1086.81077 ·doi:10.1007/s00220-004-1140-5 |
[23] | Green, WR; Toprak, E., On the fourth order schrödinger equation in four dimensions: dispersive estimates and zero energy resonance, J. Differ. Equ., 267, 3, 1899-1954 (2019) ·Zbl 1429.35059 ·doi:10.1016/j.jde.2019.03.004 |
[24] | Hill, T.: Dispersive estimates of Schrödinger and Schrödinger-like equations in one dimension. Thesis (Ph.D.)-University of Cincinnati (2020) |
[25] | Hörmander, L.: The analysis of linear partial differential operators. II, Classics in Mathematics, Springer-Verlag, Berlin, Differential operators with constant coefficients, Reprint of the 1983 original (2005) ·Zbl 1062.35004 |
[26] | Herbst, I., Skibsted, E.: Decay of eigenfunctions of elliptic PDE’s, I. Adv. Math. 270, 138-180 (2015) ·Zbl 1328.81115 |
[27] | Herbst, I., Skibsted, E.: Decay of eigenfunctions of elliptic PDE’s, II. Adv. Math. 306, 177-199 (2017) ·Zbl 1364.35209 |
[28] | Jensen, A.; Kato, T., Spectral properties of Schrödinger operators and time-decay of the wave functions, Duke Math. J., 46, 3, 583-611 (1979) ·Zbl 0448.35080 ·doi:10.1215/S0012-7094-79-04631-3 |
[29] | Jensen, A.; Nenciu, G., A unified approach to resolvent expansions at thresholds, Rev. Math. Phys., 13, 6, 717-754 (2001) ·Zbl 1029.81067 ·doi:10.1142/S0129055X01000843 |
[30] | Jensen, A., Nenciu, G.: Erratum: “A unified approach to resolvent expansions at thresholds” [Rev. Math. Phys. 13 (2001), no. 6, 717-754; mr1841744], Rev. Math. Phys. 16(5), 675-677 (2004) ·Zbl 1055.81624 |
[31] | Journé, J-L; Soffer, A.; Sogge, CD, Decay estimates for Schrödinger operators, Comm. Pure Appl. Math., 44, 5, 573-604 (1991) ·Zbl 0743.35008 ·doi:10.1002/cpa.3160440504 |
[32] | Kato, T., Growth properties of solutions of the reduced wave equation with a variable coefficient, Comm. Pure Appl. Math., 12, 403-425 (1959) ·Zbl 0091.09502 ·doi:10.1002/cpa.3160120302 |
[33] | Keel, M.; Tao, T., Endpoint Strichartz estimates, Amer. J. Math., 120, 5, 955-980 (1998) ·Zbl 0922.35028 ·doi:10.1353/ajm.1998.0039 |
[34] | Kuroda, S.T.: An introduction to scattering theory. Lecture Notes Series, vol. 51. Aarhus Universitet, Matematisk Institut, Aarhus (1978) ·Zbl 0407.47003 |
[35] | Li, P., Soffer, A., Yao, X.: Decay estimates for fourth-order Schrödinger operator in dimension two. arxiv:2110.07154 |
[36] | Mourre, E.: Absence of singular continuous spectrum for certain selfadjoint operators. Commun. Math. Phys. 78(3), 391-408 (1980/81) ·Zbl 0489.47010 |
[37] | Murata, M., Asymptotic expansions in time for solutions of Schrödinger-type equations, J. Funct. Anal., 49, 1, 10-56 (1982) ·Zbl 0499.35019 ·doi:10.1016/0022-1236(82)90084-2 |
[38] | Nakanishi, K., Schlag, W.: Invariant manifolds and dispersive Hamiltonian evolution equations. Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zrich (2011) ·Zbl 1235.37002 |
[39] | Rodnianski, I.; Schlag, W., Time decay for solutions of Schrödinger equations with rough and time-dependent potentials, Invent. Math., 155, 3, 451-513 (2004) ·Zbl 1063.35035 ·doi:10.1007/s00222-003-0325-4 |
[40] | Schechter, M.: Spectra of partial differential operators, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York. North-Holland Series in Applied Mathematics and Mechanics, Vol. 14 (1971) ·Zbl 0225.35001 |
[41] | Schlag, W., Dispersive estimates for Schrödinger operators in dimension two, Commun. Math. Phys., 257, 1, 87-117 (2005) ·Zbl 1134.35321 ·doi:10.1007/s00220-004-1262-9 |
[42] | Schlag, W.: Dispersive estimates for Schrödinger operators: a survey, Mathematical aspects of nonlinear dispersive equations, Ann. of Math. Stud., vol. 163, Princeton Univ. Press, Princeton, NJ, pp. 255-285 (2007) ·Zbl 1143.35001 |
[43] | Schlag, W., On pointwise decay of waves, J. Math. Phys., 62, 6, 061509,27 (2021) ·Zbl 1467.81039 ·doi:10.1063/5.0042767 |
[44] | Simon, B.: Tosio Kato’s work on non-relativistic quantum mechanics: part 1. Bull. Math. Sci. 8(1), 121-232 (2018) ·Zbl 1416.81063 |
[45] | Simon, B.: Tosio Kato’s work on non-relativistic quantum mechanics: part 2, Bull. Math. Sci. In Press (2018) ·Zbl 1416.81063 |
[46] | Stein, E.M.: Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III (1993) ·Zbl 0821.42001 |
[47] | Sikora, A., Yan, L., Yao, X.: Spectral multipliers, Bochner-Riesz means and uniform Sobolev inequalities for elliptic operators, Int. Math. Res. Not. IMRN 10, 3070-3121 (2018) ·Zbl 1407.35006 |
[48] | Tao, T.: Nonlinear dispersive equations, CBMS Regional Conference Series in Mathematics, vol. 106, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, Local and global analysis (2006) ·Zbl 1106.35001 |
[49] | Weder, RA, The \(W^{k, p}-\) continuity of the Schrödinger wave operatos on the line, Commun. Math. Phys., 208, 2, 507-520 (1999) ·Zbl 0945.34070 ·doi:10.1007/s002200050767 |
[50] | Weder, RA, \(L^p-L^{p^\prime }\) estimates for the Schrödinger equation on the line and inverse scattering for the non linear Schrödinger equation with a potential, J. Funct. Anal., 170, 37-68 (2000) ·Zbl 0943.34070 ·doi:10.1006/jfan.1999.3507 |
[51] | Yajima, K., The \(W^{k, p}\)-continuity of wave operators for Schrödinger operators, J. Math. Soc. Jpn., 47, 3, 551-581 (1995) ·Zbl 0837.35039 ·doi:10.2969/jmsj/04730551 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.