[1] | Adachi, T., Characterizing \(\tau \)-tilting finite algebras with radical square zero, Proc. Amer. Math. Soc. 144(11) (2016), 4673-4685. ·Zbl 1383.16012 |
[2] | Adachi, T., The classification of \(\tau \)-tilting modules over Nakayama algebras, J. Algebra452 (2016), 227-262. ·Zbl 1369.16014 |
[3] | Adachi, T., Iyama, O. and Reiten, I., \( \tau \)-tilting theory, Compos. Math. 150(3) (2014), 415-452. ·Zbl 1330.16004 |
[4] | Adachi, T., Aihara, T. and Chan, A., Classification of two-term tilting complexes over Brauer graph algebras, Math. Z. 290(1-2) (2018), 1-36. ·Zbl 1433.16010 |
[5] | Aihara, T. and Iyama, O., Silting mutation in triangulated categories, J. Lond. Math. Soc. (2)85(3) (2012), 633-668. ·Zbl 1271.18011 |
[6] | Aihara, T. and Mizuno, Y., Classifying tilting complexes over preprojective algebras of Dynkin type, Algeb. Num. Theory11(6) (2017), 1287-1315. ·Zbl 1412.16008 |
[7] | Assem, I. and Skowroński, A., Quadratic forms and iterated tilted algebras, J. Algebra128(1) (1990), 55-85. ·Zbl 0686.16020 |
[8] | Assem, I., Happel, D. and Roldán, O., Representation-finite trivial extension algebras, J. Pure Appl. Algebra33(3) (1984), 235-242. ·Zbl 0564.16027 |
[9] | Assem, I., Simson, D. and Skowroński, A., Elements of the representation theory of associative algebras. Vol. 1. Techniques of representation theory, , Volume 65 (Cambridge University Press, Cambridge, 2006). ·Zbl 1092.16001 |
[10] | Auslander, M., Reiten, I. and Smalø, S. O., Representation theory of Artin algebras, , Volume 36 (Cambridge University Press, Cambridge, 1995). ·Zbl 0834.16001 |
[11] | Bautista, R., Classification of certain algebras of finite representation type, An. Int. Mat. Univ. Nac. Autónoma México22 (1982), 1-82. ·Zbl 0598.16032 |
[12] | Białkowski, J. and Skowroński, A., On tame weakly symmetric algebras having only periodic modules, Arch. Math. (Basel)81(2) (2003), 142-154. ·Zbl 1063.16020 |
[13] | Białkowski, J. and Skowroński, A., Socle deformations of self-injective algebras of tubular type, J. Math. Soc. Japan56(3) (2004), 687-716. ·Zbl 1137.16024 |
[14] | Białkowski, J., Holm, T. and Skowroński, A., Derived equivalences for tame weakly symmetric algebras having only periodic modules, J. Algebra269(2) (2003), 652-668. ·Zbl 1050.16010 |
[15] | Coelho, F. U. and Happel, D., Quasitilted algebras admit a preprojective component, Proc. Am. Math. Soc. 125(5) (1997), 1283-1291. ·Zbl 0880.16006 |
[16] | Demonet, L., Iyama, O., Reading, N., Reiten, I. and Thomas, H., Lattice theory of torsion classes. Preprint (2017), arXiv:1711.01785. |
[17] | Eisele, F., Janssens, G. and Raedschelders, T., A reduction theorem for \(\tau \)-rigid modules, Math. Z. 290(3-4) (2018), 1377-1413. ·Zbl 1433.16011 |
[18] | Escolar, E. G. and Hiraoka, Y., Persistence modules on commutative ladders of finite type, Discrete Comput. Geom. 55(1) (2016), 100-157. ·Zbl 1411.16011 |
[19] | Happel, D., Tilting sets on cylinders, Proc. London Math. Soc. (3)51(1) (1985), 21-55. ·Zbl 0583.16020 |
[20] | Happel, D. and Vossieck, D., Minimal algebras of infinite representation type with preprojective component, Manuscripta Math. 42(2-3) (1983), 221-243. ·Zbl 0516.16023 |
[21] | Iyama, O. and Yang, D., Silting reduction and Calabi-Yau reduction of triangulated categories, Trans. Amer. Math. Soc. 370(11) (2018), 7861-7898. ·Zbl 1443.18006 |
[22] | Leszczyński, Z., The completely separating incidence algebras of tame representation type, Colloq. Math. 94(2) (2002), 243-262. ·Zbl 1057.16009 |
[23] | Leszczyński, Z. and Simson, D., On triangular matrix rings of finite representation type, J. Lond. Math. Soc. (2)20(3) (1979), 396-402. ·Zbl 0434.16022 |
[24] | Malicki, P. and Skowroński, A., Cycle-finite algebras with finitely many \(\tau \)-rigid indecomposable modules, Comm. Algebra44(5) (2016), 2048-2057. ·Zbl 1346.16008 |
[25] | Martínez-Villa, R., Algebras stably equivalent to \(\ell \)-hereditary, in Representation theory, II (Proc. Second Internat. Conf., Carleton Univ., Ottawa, Ont., 1979), pp. 396-431, Lecture Notes in Math., Volume 832 (Springer, Berlin, 1980). ·Zbl 0443.16019 |
[26] | Mizuno, Y., Classifying \(\tau \)-tilting modules over preprojective algebras of Dynkin type, Math. Z. 277(3-4) (2014), 665-690. ·Zbl 1355.16008 |
[27] | Mousavand, K., \( \tau \)-tilting finiteness of biserial algebras. Preprint (2019), arXiv:1904.11514. |
[28] | Plamondon, P.-G., \( \tau \)-tilting finite gentle algebras are representation-finite, Pacific J. Math. 302(2) (2019), 709-716. ·Zbl 1490.16041 |
[29] | Ringel, C. M., Tame algebras and integral quadratic forms, , Volume 1099 (Springer-Verlag, Berlin, 1984). ·Zbl 0546.16013 |
[30] | Simson, D. and Skowroński, A., Elements of the representation theory of associative algebras. Vol. 2. Tubes and concealed algebras of Euclidean type, , Volume 71 (Cambridge University Press, Cambridge, 2007). ·Zbl 1131.16001 |
[31] | Skowroński, A., Minimal representation-infinite Artin algebras, Math. Proc. Cambridge Philos. Soc. 116(2) (1994), 229-243. ·Zbl 0822.16010 |
[32] | Skowroński, A., Selfinjective algebras: Finite and tame type, in Trends in representation theory of Algebras and related topics, pp. 69-238, Contemp. Math., Volume 406 (American Mathematical Society, 2006). ·Zbl 1129.16013 |
[33] | Wang, Q., On \(\tau \)-tilting finite simply connected algebras. Preprint (2019), arXiv:1910.01937. |
[34] | Zito, S., \( \tau \)-tilting finite tilted and cluster-tilted algebras, Proc. Edinb. Math. Soc. (2) 63(4) (2020), 950-955. ·Zbl 1461.16016 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.