Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Report on the finiteness of silting objects.(English)Zbl 1505.16013

Silting theory, a generalisation of tilting theory, is currently a highly active area of representation theory. Silting objects provide information on the relationship between derived categories of different finite-dimensional algebras, and when the silting theory of an algebra is sufficiently well-behaved (precisely, the algebra is silting-discrete), the stability manifold of its derived category is known to be contractible [D. Pauksztello et al., Forum Math. 30, No. 5, 1255–1263 (2018;Zbl 1407.18013)]. Silting-discreteness implies, in particular, the existence of only finitely many \(2\)-term silting objects.
In this paper, the authors demonstrate how abstract results from other sources can be used to control the silting theory of certain classes of algebras. Most of the results concern the derived category, with the authors showing that for particular families of algebras this category has finitely many \(2\)-term silting objects (up to additive equivalence). They also show that singularity categories of Iwanaga-Gorenstein algebras have no silting objects at all, and give classes of algebras for which finiteness of the number of \(2\)-term silting objects is equivalent to being representation-finite.
The main technique is the use of reduction theorems for silting or \(\tau\)-tilting objects, as in [O. Iyama andD. Yang, Trans. Am. Math. Soc. 370, No. 11, 7861–7898 (2018;Zbl 1443.18006)] and [F. Eisele et al., Math. Z. 290, No. 3–4, 1377–1413 (2018;Zbl 1433.16011)].
Some of the families of algebras considered in this paper have complete classifications, and the authors compute the precise number of \(2\)-term silting objects in their derived categories.

MSC:

16G20 Representations of quivers and partially ordered sets
16G60 Representation type (finite, tame, wild, etc.) of associative algebras

Cite

References:

[1]Adachi, T., Characterizing \(\tau \)-tilting finite algebras with radical square zero, Proc. Amer. Math. Soc. 144(11) (2016), 4673-4685. ·Zbl 1383.16012
[2]Adachi, T., The classification of \(\tau \)-tilting modules over Nakayama algebras, J. Algebra452 (2016), 227-262. ·Zbl 1369.16014
[3]Adachi, T., Iyama, O. and Reiten, I., \( \tau \)-tilting theory, Compos. Math. 150(3) (2014), 415-452. ·Zbl 1330.16004
[4]Adachi, T., Aihara, T. and Chan, A., Classification of two-term tilting complexes over Brauer graph algebras, Math. Z. 290(1-2) (2018), 1-36. ·Zbl 1433.16010
[5]Aihara, T. and Iyama, O., Silting mutation in triangulated categories, J. Lond. Math. Soc. (2)85(3) (2012), 633-668. ·Zbl 1271.18011
[6]Aihara, T. and Mizuno, Y., Classifying tilting complexes over preprojective algebras of Dynkin type, Algeb. Num. Theory11(6) (2017), 1287-1315. ·Zbl 1412.16008
[7]Assem, I. and Skowroński, A., Quadratic forms and iterated tilted algebras, J. Algebra128(1) (1990), 55-85. ·Zbl 0686.16020
[8]Assem, I., Happel, D. and Roldán, O., Representation-finite trivial extension algebras, J. Pure Appl. Algebra33(3) (1984), 235-242. ·Zbl 0564.16027
[9]Assem, I., Simson, D. and Skowroński, A., Elements of the representation theory of associative algebras. Vol. 1. Techniques of representation theory, , Volume 65 (Cambridge University Press, Cambridge, 2006). ·Zbl 1092.16001
[10]Auslander, M., Reiten, I. and Smalø, S. O., Representation theory of Artin algebras, , Volume 36 (Cambridge University Press, Cambridge, 1995). ·Zbl 0834.16001
[11]Bautista, R., Classification of certain algebras of finite representation type, An. Int. Mat. Univ. Nac. Autónoma México22 (1982), 1-82. ·Zbl 0598.16032
[12]Białkowski, J. and Skowroński, A., On tame weakly symmetric algebras having only periodic modules, Arch. Math. (Basel)81(2) (2003), 142-154. ·Zbl 1063.16020
[13]Białkowski, J. and Skowroński, A., Socle deformations of self-injective algebras of tubular type, J. Math. Soc. Japan56(3) (2004), 687-716. ·Zbl 1137.16024
[14]Białkowski, J., Holm, T. and Skowroński, A., Derived equivalences for tame weakly symmetric algebras having only periodic modules, J. Algebra269(2) (2003), 652-668. ·Zbl 1050.16010
[15]Coelho, F. U. and Happel, D., Quasitilted algebras admit a preprojective component, Proc. Am. Math. Soc. 125(5) (1997), 1283-1291. ·Zbl 0880.16006
[16]Demonet, L., Iyama, O., Reading, N., Reiten, I. and Thomas, H., Lattice theory of torsion classes. Preprint (2017), arXiv:1711.01785.
[17]Eisele, F., Janssens, G. and Raedschelders, T., A reduction theorem for \(\tau \)-rigid modules, Math. Z. 290(3-4) (2018), 1377-1413. ·Zbl 1433.16011
[18]Escolar, E. G. and Hiraoka, Y., Persistence modules on commutative ladders of finite type, Discrete Comput. Geom. 55(1) (2016), 100-157. ·Zbl 1411.16011
[19]Happel, D., Tilting sets on cylinders, Proc. London Math. Soc. (3)51(1) (1985), 21-55. ·Zbl 0583.16020
[20]Happel, D. and Vossieck, D., Minimal algebras of infinite representation type with preprojective component, Manuscripta Math. 42(2-3) (1983), 221-243. ·Zbl 0516.16023
[21]Iyama, O. and Yang, D., Silting reduction and Calabi-Yau reduction of triangulated categories, Trans. Amer. Math. Soc. 370(11) (2018), 7861-7898. ·Zbl 1443.18006
[22]Leszczyński, Z., The completely separating incidence algebras of tame representation type, Colloq. Math. 94(2) (2002), 243-262. ·Zbl 1057.16009
[23]Leszczyński, Z. and Simson, D., On triangular matrix rings of finite representation type, J. Lond. Math. Soc. (2)20(3) (1979), 396-402. ·Zbl 0434.16022
[24]Malicki, P. and Skowroński, A., Cycle-finite algebras with finitely many \(\tau \)-rigid indecomposable modules, Comm. Algebra44(5) (2016), 2048-2057. ·Zbl 1346.16008
[25]Martínez-Villa, R., Algebras stably equivalent to \(\ell \)-hereditary, in Representation theory, II (Proc. Second Internat. Conf., Carleton Univ., Ottawa, Ont., 1979), pp. 396-431, Lecture Notes in Math., Volume 832 (Springer, Berlin, 1980). ·Zbl 0443.16019
[26]Mizuno, Y., Classifying \(\tau \)-tilting modules over preprojective algebras of Dynkin type, Math. Z. 277(3-4) (2014), 665-690. ·Zbl 1355.16008
[27]Mousavand, K., \( \tau \)-tilting finiteness of biserial algebras. Preprint (2019), arXiv:1904.11514.
[28]Plamondon, P.-G., \( \tau \)-tilting finite gentle algebras are representation-finite, Pacific J. Math. 302(2) (2019), 709-716. ·Zbl 1490.16041
[29]Ringel, C. M., Tame algebras and integral quadratic forms, , Volume 1099 (Springer-Verlag, Berlin, 1984). ·Zbl 0546.16013
[30]Simson, D. and Skowroński, A., Elements of the representation theory of associative algebras. Vol. 2. Tubes and concealed algebras of Euclidean type, , Volume 71 (Cambridge University Press, Cambridge, 2007). ·Zbl 1131.16001
[31]Skowroński, A., Minimal representation-infinite Artin algebras, Math. Proc. Cambridge Philos. Soc. 116(2) (1994), 229-243. ·Zbl 0822.16010
[32]Skowroński, A., Selfinjective algebras: Finite and tame type, in Trends in representation theory of Algebras and related topics, pp. 69-238, Contemp. Math., Volume 406 (American Mathematical Society, 2006). ·Zbl 1129.16013
[33]Wang, Q., On \(\tau \)-tilting finite simply connected algebras. Preprint (2019), arXiv:1910.01937.
[34]Zito, S., \( \tau \)-tilting finite tilted and cluster-tilted algebras, Proc. Edinb. Math. Soc. (2) 63(4) (2020), 950-955. ·Zbl 1461.16016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp