Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Refined dual Grothendieck polynomials, integrability, and the Schur measure.(English)Zbl 1505.05134

Summary: We prove a Jacobi-Trudi formula, a Littlewood identity, a Cauchy identity, and symmetries for refined dual Grothendieck polynomials by using the Lindström-Gessel-Viennot lemma and an interpretation as integrable vertex models. We give an alternative definition of refined dual Grothendieck polynomials from the last passage percolation model. We then prove a Jacobi-Trudi formula for skew shapes and give a new proof of a relation with the Schur measure due toJ. Baik andE. M. Rains [Duke Math. J. 109, No. 1, 1–65 (2001;Zbl 1007.05096)].

MSC:

05E05 Symmetric functions and generalizations

Citations:

Zbl 1007.05096

Software:

SageMath

Cite

References:

[1]A. Amanov and D. Yeliussizov. “Determinantal formulas for dual Grothendieck polynomials”. 2020.arXiv:2003.03907. ·Zbl 1504.05291
[2]J. Baik and E. M. Rains. “Algebraic aspects of increasing subsequences”.Duke Math. J. 109.1 (2001), pp. 1-65.doi. ·Zbl 1007.05096
[3]W. Y. C. Chen, B. Li, and J. D. Louck. “The flagged double Schur function”.J. Algebraic Combin.15.1 (2002), pp. 7-26.doi. ·Zbl 0990.05133
[4]P. Galashin, D. Grinberg, and G. Liu. “Refined dual stable Grothendieck polynomials and generalized Bender-Knuth involutions”.Electron. J. Combin.23.3 (2016), #3.14, 28. ·Zbl 1344.05148
[5]S. Iwao. “Free-fermions and skew stable Grothendieck polynomials”. 2020.arXiv:2004.09499. ·Zbl 1501.81016
[6]K. Johansson. “Shape fluctuations and random matrices”.Comm. Math. Phys.209.2 (2000), pp. 437-476.doi. ·Zbl 0969.15008
[7]K. Johansson. “A multi-dimensional Markov chain and the Meixner ensemble”.Ark. Mat. 48.1 (2010), pp. 79-95.doi. ·Zbl 1197.60072
[8]J. S. Kim. “Jacobi-Trudi formula for flagged refined dual stable Grothendieck polynomials”. 2020.arXiv:2008.12000. ·Zbl 1515.05186
[9]T. Lam and P. Pylyavskyy. “Combinatorial Hopf algebras andK-homology of Grassmannians”.Int. Math. Res. Not. IMRN2007.24 (2007), Art. ID rnm125, 48.doi. ·Zbl 1134.16017
[10]A. Lascoux.Symmetric functions and combinatorial operators on polynomials. Vol. 99. CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2003, pp. xii+268.doi. ·Zbl 1039.05066
[11]A. Lascoux and H. Naruse. “Finite sum Cauchy identity for dual Grothendieck polynomials”.Proc. Japan Acad. Ser. A Math. Sci.90.7 (2014), pp. 87-91.doi. ·Zbl 1360.05183
[12]A. Lascoux and M.-P. Schützenberger. “Structure de Hopf de l’anneau de cohomologie et de l’anneau de Grothendieck d’une variété de drapeaux”.C. R. Acad. Sci. Paris Sér. I Math. 295.11 (1982), pp. 629-633. ·Zbl 0542.14030
[13]K. Motegi and K. Sakai. “Vertex models, TASEP and Grothendieck polynomials”.J. Phys. A46.35 (2013), pp. 355201, 26.doi. ·Zbl 1278.82042
[14]A. Okounkov. “Random matrices and random permutations”.Int. Math. Res. Not. IMRN 20 (2000), pp. 1043-1095.doi. ·Zbl 1018.15020
[15]Sage Mathematics Software (Version 9.0).https://www.sagemath.org. The Sage Developers. 2019.
[16]D. Yeliussizov. “Duality and deformations of stable Grothendieck polynomials”.J. Algebraic Combin.45.1 (2017), pp. 295-344.doi. ·Zbl 1355.05263
[17]D. Yeliussizov. “Random plane partitions and corner distributions”. 2019.arXiv:1910.13378. ·Zbl 1473.05310
[18]D. Yeliussizov. “Dual Grothendieck polynomials via last-passage percolation”.C. R. Math. Acad. Sci. Paris358.4 (2020), pp. 497-503.Link ·Zbl 1444.05145
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp