Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Gap probabilities in the bulk of the Airy process.(English)Zbl 1503.60056

Summary: We consider the probability that no points lie on \(g\) large intervals in the bulk of the Airy point process. We make a conjecture for all the terms in the asymptotics up to and including the oscillations of order \(1\), and we prove this conjecture for \(g=1\).

MSC:

60G55 Point processes (e.g., Poisson, Cox, Hawkes processes)
30E25 Boundary value problems in the complex plane
41A60 Asymptotic approximations, asymptotic expansions (steepest descent, etc.)
60B20 Random matrices (probabilistic aspects)

Software:

DLMF

Cite

References:

[1]Adler, M., Delépine, J. and van Moerbeke, P., Dyson’s nonintersecting Brownian motions with a few outliers, Comm. Pure Appl. Math.62 (2008) 334-395. ·Zbl 1166.60048
[2]Baik, J., Buckingham, R. and Di Franco, J., Asymptotics of Tracy-Widom distributions and the total integral of a Painlevé II function, Comm. Math. Phys.280 (2008) 463-497. ·Zbl 1221.33032
[3]Baik, J., Deift, P. and Johansson, K., On the distribution of the length of the longest increasing subsequence of random permutations, J. Amer. Math. Soc.12 (1999) 1119-1178. ·Zbl 0932.05001
[4]Baik, J., Deift, P. and Rains, E., A Fredholm determinant identity and the convergence of moments for random Young tableaux, Comm. Math. Phys.223 (2001) 627-672. ·Zbl 1005.47026
[5]Beffara, V., Chhita, S. and Johansson, K., Airy point process at the liquid-gas boundary, Ann. Probab.46 (2018) 2973-3013. ·Zbl 1428.60063
[6]Blackstone, E., Charlier, C. and Lenells, J., Oscillatory asymptotics for the Airy kernel determinant on two intervals, Int. Math. Res. Not. (2020), https://doi.org/10.1093/imrn/rnaa205. ·Zbl 1498.60178
[7]E. Blackstone, C. Charlier and J. Lenells, The Bessel kernel determinant on large intervals and Birkhoff’s ergodic theorem, preprint (2021), arXiv:2101.09216.
[8]Bornemann, F., On the numerical evaluation of Fredholm determinants, Math. Comp.79 (2010) 871-915. ·Zbl 1208.65182
[9]Borodin, A., Okounkov, A. and Olshanski, G., Asymptotics of Plancherel measures for symmetric groups, J. Amer. Math. Soc.13 (2000) 481-515. ·Zbl 0938.05061
[10]Bourgade, P., Erdős, L. and Yau, H.-T., Edge universality of beta ensembles, Comm. Math. Phys.332 (2014) 261-353. ·Zbl 1306.82010
[11]Bufetov, A., Rigidity of determinantal point processes with the Airy, the Bessel and the gamma kernel, Bull. Math. Sci.6 (2016) 163-172. ·Zbl 1335.60075
[12]C. Charlier and T. Claeys, Global rigidity and exponential moments for soft and hard edge point processes, preprint (2020), arXiv:2002.03833. ·Zbl 1512.60030
[13]Claeys, T. and Doeraene, A., The generating function for the Airy point process and a system of coupled Painlevé II equations, Stud. Appl. Math.140 (2018) 403-437. ·Zbl 1419.37063
[14]Corwin, I. and Ghosal, P., Lower tail of the KPZ equation, Duke Math. J.169 (2020) 1329-1395. ·Zbl 1457.35096
[15]Deift, P., Gioev, D., Universality at the edge of the spectrum for unitary, orthogonal and symplectic ensembles of random matrices, Comm. Pure Appl. Math.60 (2007) 867-910. ·Zbl 1119.15022
[16]Deift, P., Its, A. and Krasovsky, I., Asymptotics for the Airy-kernel determinant, Comm. Math. Phys.278 (2008) 643-678. ·Zbl 1167.15005
[17]Deift, P., Its, A. and Zhou, X., A Riemann-Hilbert approach to asymptotic problems arising in the theory of random matrix models, and also in the theory of integrable statistical mechanics, Ann. of Math.146 (1997) 149-235. ·Zbl 0936.47028
[18]Deift, P., Kriecherbauer, T., McLaughlin, K., Venakides, S. and Zhou, X., Strong asymptotics of orthogonal polynomials with respect to exponential weights, Comm. Pure Appl. Math.52 (1999) 1491-1552. ·Zbl 1026.42024
[19]Deift, P., Kriecherbauer, T., McLaughlin, K. T.-R., Venakides, S. and Zhou, X., Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory, Comm. Pure Appl. Math.52 (1999) 1335-1425. ·Zbl 0944.42013
[20]Deift, P. and Zhou, X., A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the MKdV equation, Ann. Math.137 (1993) 295-368. ·Zbl 0771.35042
[21]B. Fahs and I. Krasovsky, Sine-kernel determinant on two large intervals, preprint (2020), arXiv:2003.08136.
[22]Farkas, H. and Kra, I., Riemann Surfaces, 2nd edn. (Springer, Berlin, 1980). ·Zbl 0475.30001
[23]Gradshteyn, I. S. and Ryzhik, I. M., Table of Integrals, Series, and Products7th edn. (Elsevier Academic Press, Amsterdam, 2007). ·Zbl 1208.65001
[24]Its, A., Izergin, A. G., Korepin, V. E. and Slavnov, N. A., Differential equations for quantum correlation functions, in Yang-Baxter Equations, Conformal Invariance and Integrability in Statistical Mechanics and Field Theory-Proceedings of a Conference, Vol. 4 (World Scientfic, 1990), pp. 1003-1037. ·Zbl 0719.35091
[25]Johansson, K., The arctic circle boundary and the Airy process, Ann. Prob.33 (2005) 1-30. ·Zbl 1096.60039
[26]I. Krasovsky and T. Maroudas, Airy-kernel determinant on two large intervals, preprint (2021) arXiv:2108.04495.
[27]Olver, F. W. J., Lozier, D. W., Boisvert, R. F. and Clark, C. W., NIST Handbook of Mathematical Functions (Cambridge University Press, 2010). ·Zbl 1198.00002
[28]Soshnikov, A., Determinantal random point fields, Russ. Math. Surv.55 (2000) 923-975. ·Zbl 0991.60038
[29]Tracy, C. and Widom, H., Level-spacing distributions and the Airy kernel, Comm. Math. Phys.159 (1994) 151-174. ·Zbl 0789.35152
[30]Widom, H., Asymptotics for the Fredholm determinant of the sine kernel on a union of intervals, Comm. Math. Phys.171 (1995) 159-180. ·Zbl 0839.47032
[31]Xu, S.-X. and Dai, D., Tracy-Widom distributions in critical unitary random matrix ensembles and the coupled Painlevé II system, Comm. Math. Phys.365 (2019) 515-567. ·Zbl 1464.60009
[32]C. Zhong, Large deviation bounds for the Airy point process, preprint (2019), arXiv:1910.00797.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp