[1] | Adler, M., Delépine, J. and van Moerbeke, P., Dyson’s nonintersecting Brownian motions with a few outliers, Comm. Pure Appl. Math.62 (2008) 334-395. ·Zbl 1166.60048 |
[2] | Baik, J., Buckingham, R. and Di Franco, J., Asymptotics of Tracy-Widom distributions and the total integral of a Painlevé II function, Comm. Math. Phys.280 (2008) 463-497. ·Zbl 1221.33032 |
[3] | Baik, J., Deift, P. and Johansson, K., On the distribution of the length of the longest increasing subsequence of random permutations, J. Amer. Math. Soc.12 (1999) 1119-1178. ·Zbl 0932.05001 |
[4] | Baik, J., Deift, P. and Rains, E., A Fredholm determinant identity and the convergence of moments for random Young tableaux, Comm. Math. Phys.223 (2001) 627-672. ·Zbl 1005.47026 |
[5] | Beffara, V., Chhita, S. and Johansson, K., Airy point process at the liquid-gas boundary, Ann. Probab.46 (2018) 2973-3013. ·Zbl 1428.60063 |
[6] | Blackstone, E., Charlier, C. and Lenells, J., Oscillatory asymptotics for the Airy kernel determinant on two intervals, Int. Math. Res. Not. (2020), https://doi.org/10.1093/imrn/rnaa205. ·Zbl 1498.60178 |
[7] | E. Blackstone, C. Charlier and J. Lenells, The Bessel kernel determinant on large intervals and Birkhoff’s ergodic theorem, preprint (2021), arXiv:2101.09216. |
[8] | Bornemann, F., On the numerical evaluation of Fredholm determinants, Math. Comp.79 (2010) 871-915. ·Zbl 1208.65182 |
[9] | Borodin, A., Okounkov, A. and Olshanski, G., Asymptotics of Plancherel measures for symmetric groups, J. Amer. Math. Soc.13 (2000) 481-515. ·Zbl 0938.05061 |
[10] | Bourgade, P., Erdős, L. and Yau, H.-T., Edge universality of beta ensembles, Comm. Math. Phys.332 (2014) 261-353. ·Zbl 1306.82010 |
[11] | Bufetov, A., Rigidity of determinantal point processes with the Airy, the Bessel and the gamma kernel, Bull. Math. Sci.6 (2016) 163-172. ·Zbl 1335.60075 |
[12] | C. Charlier and T. Claeys, Global rigidity and exponential moments for soft and hard edge point processes, preprint (2020), arXiv:2002.03833. ·Zbl 1512.60030 |
[13] | Claeys, T. and Doeraene, A., The generating function for the Airy point process and a system of coupled Painlevé II equations, Stud. Appl. Math.140 (2018) 403-437. ·Zbl 1419.37063 |
[14] | Corwin, I. and Ghosal, P., Lower tail of the KPZ equation, Duke Math. J.169 (2020) 1329-1395. ·Zbl 1457.35096 |
[15] | Deift, P., Gioev, D., Universality at the edge of the spectrum for unitary, orthogonal and symplectic ensembles of random matrices, Comm. Pure Appl. Math.60 (2007) 867-910. ·Zbl 1119.15022 |
[16] | Deift, P., Its, A. and Krasovsky, I., Asymptotics for the Airy-kernel determinant, Comm. Math. Phys.278 (2008) 643-678. ·Zbl 1167.15005 |
[17] | Deift, P., Its, A. and Zhou, X., A Riemann-Hilbert approach to asymptotic problems arising in the theory of random matrix models, and also in the theory of integrable statistical mechanics, Ann. of Math.146 (1997) 149-235. ·Zbl 0936.47028 |
[18] | Deift, P., Kriecherbauer, T., McLaughlin, K., Venakides, S. and Zhou, X., Strong asymptotics of orthogonal polynomials with respect to exponential weights, Comm. Pure Appl. Math.52 (1999) 1491-1552. ·Zbl 1026.42024 |
[19] | Deift, P., Kriecherbauer, T., McLaughlin, K. T.-R., Venakides, S. and Zhou, X., Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory, Comm. Pure Appl. Math.52 (1999) 1335-1425. ·Zbl 0944.42013 |
[20] | Deift, P. and Zhou, X., A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the MKdV equation, Ann. Math.137 (1993) 295-368. ·Zbl 0771.35042 |
[21] | B. Fahs and I. Krasovsky, Sine-kernel determinant on two large intervals, preprint (2020), arXiv:2003.08136. |
[22] | Farkas, H. and Kra, I., Riemann Surfaces, 2nd edn. (Springer, Berlin, 1980). ·Zbl 0475.30001 |
[23] | Gradshteyn, I. S. and Ryzhik, I. M., Table of Integrals, Series, and Products7th edn. (Elsevier Academic Press, Amsterdam, 2007). ·Zbl 1208.65001 |
[24] | Its, A., Izergin, A. G., Korepin, V. E. and Slavnov, N. A., Differential equations for quantum correlation functions, in Yang-Baxter Equations, Conformal Invariance and Integrability in Statistical Mechanics and Field Theory-Proceedings of a Conference, Vol. 4 (World Scientfic, 1990), pp. 1003-1037. ·Zbl 0719.35091 |
[25] | Johansson, K., The arctic circle boundary and the Airy process, Ann. Prob.33 (2005) 1-30. ·Zbl 1096.60039 |
[26] | I. Krasovsky and T. Maroudas, Airy-kernel determinant on two large intervals, preprint (2021) arXiv:2108.04495. |
[27] | Olver, F. W. J., Lozier, D. W., Boisvert, R. F. and Clark, C. W., NIST Handbook of Mathematical Functions (Cambridge University Press, 2010). ·Zbl 1198.00002 |
[28] | Soshnikov, A., Determinantal random point fields, Russ. Math. Surv.55 (2000) 923-975. ·Zbl 0991.60038 |
[29] | Tracy, C. and Widom, H., Level-spacing distributions and the Airy kernel, Comm. Math. Phys.159 (1994) 151-174. ·Zbl 0789.35152 |
[30] | Widom, H., Asymptotics for the Fredholm determinant of the sine kernel on a union of intervals, Comm. Math. Phys.171 (1995) 159-180. ·Zbl 0839.47032 |
[31] | Xu, S.-X. and Dai, D., Tracy-Widom distributions in critical unitary random matrix ensembles and the coupled Painlevé II system, Comm. Math. Phys.365 (2019) 515-567. ·Zbl 1464.60009 |
[32] | C. Zhong, Large deviation bounds for the Airy point process, preprint (2019), arXiv:1910.00797. |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.