Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

The \(\log\) symplectic geometry of Poisson slices.(English)Zbl 1503.53148

This paper studies the Poisson slices \(X_{\tau}:=\nu^{-1}\left( \mathcal{S}_{\tau}\right) \subset X\) determined by an \({sl}_{2}\)-triple \(\tau=\left( \xi,h,\eta\right) \in\mathfrak{g}^{\oplus3}\) and a momentum map \(\nu:X\rightarrow\mathfrak{g}\) of a Poisson Hamiltonian \(G\)-variety \(X\) for a complex semisimple Lie algebra \(\mathfrak{g}\) with adjoint group \(G\), where \(\mathcal{S}_{\tau}:=\xi+\mathfrak{g}_{\eta}\) for the centralizer \(\mathfrak{g}_{\eta}\) of \(\eta\), and \(\mathfrak{g}\) is identified with \(\mathfrak{g}^{\ast}\) via the Killing form. It also presents a systematic construction of a partial compactification of \(X_{\tau}\) using the Hamiltonian reduction \(\overline{X_{\tau}}:=\left( X\times\left( \overline {G\times\mathcal{S}_{\tau}}\right) \right) //G\) (when well defined), where the Poisson slice \(\overline{G\times\mathcal{S}_{\tau}}:=\overline{\rho}_{R}^{-1}\left( \mathcal{S}_{\tau}\right) \) for the momentum map \(\left( \overline{\rho}_{L},\overline{\rho}_{R}\right) :T^{\ast}\overline{G}\left( \log\left( D\right) \right) \rightarrow\mathfrak{g}\oplus\mathfrak{g}\) of the log cotangent bundle \(T^{\ast}\overline{G}\left( \log\left( D\right) \right) \) is shown to be irreducible and log symplectic, containing \(G\times\mathcal{S}_{\tau}\) as the unique open dense symplectic leaf.
In general, \(X_{\tau}\) is a Poisson transversal that is transverse to the \(G\)-orbits in \(X\), and when \(X\) is a log symplectic variety, each irreducible component of \(X_{\tau}\) is a log symplectic subvariety. Furthermore for an \({sl}_{2}\)-triple \(\tau\) of regular elements in \(\mathfrak{g}\), if both \(\overline{X_{\tau}}\) and \(X/G\) exist as well-defined geometric quotients then we get a well-defined canonical map \(\overline{X_{\tau}}\rightarrow X/G\) which gives a fiberwise compactification of the canonical map \(X_{\tau }\rightarrow X/G\). This covers some known examples, like the universal centralizers \(\mathcal{Z}_{\mathfrak{g}}^{\tau}\) and the hyper-Kähler slices \(G\times\mathcal{S}_{\tau}\).

MSC:

53D17 Poisson manifolds; Poisson groupoids and algebroids
53D05 Symplectic manifolds (general theory)
17B20 Simple, semisimple, reductive (super)algebras
53C26 Hyper-Kähler and quaternionic Kähler geometry, “special” geometry

Cite

© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp