Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Random embeddings with an almost Gaussian distortion.(English)Zbl 1501.46010

Authors’ abstract: Let \(X\) be a symmetric, isotropic random vector in \(\mathbb{R}^m\) and let \(X_1 \dots, X_n\) be independent copies of \(X\). We show that under mild assumptions on \(\| X \|_2\) (a suitable thin-shell bound) and on the tail-decay of the marginals \(\langle X, u \rangle\), the random matrix \(A\) whose columns are \(X_i / \sqrt{ m}\) exhibits a Gaussian-like behaviour in the following sense: for an arbitrary subset of \(T \subset \mathbb{R}^n\), the distortion \(\sup_{t \in T} | \| A t \|_2^2 - \| t \|_2^2 |\) is almost the same as if \(A\) were a Gaussian matrix.
A simple outcome of our result is that if \(X\) is a symmetric, isotropic, log-concave random vector and \(n \leq m \leq c_1(\alpha) n^\alpha\) for some \(\alpha > 1\), then with high probability, the extremal singular values of \(A\) satisfy the optimal estimate: \(1 - c_2(\alpha) \sqrt{ n / m} \leq \lambda_{\min} \leq \lambda_{\max} \leq 1 + c_2(\alpha) \sqrt{ n / m}\).

MSC:

46B09 Probabilistic methods in Banach space theory
60B20 Random matrices (probabilistic aspects)
46N30 Applications of functional analysis in probability theory and statistics
52A23 Asymptotic theory of convex bodies
60G99 Stochastic processes

Cite

References:

[1]Adamczak, R.; Litvak, A. E.; Pajor, A.; Tomczak-Jaegermann, N., Quantitative estimates of the convergence of the empirical covariance matrix in log-concave ensembles, J. Am. Math. Soc., 23, 2, 535-561 (2010) ·Zbl 1206.60006
[2]Anttila, M.; Ball, K.; Perissinaki, I., The central limit problem for convex bodies, Trans. Am. Math. Soc., 355, 12, 4723-4735 (2003) ·Zbl 1033.52003
[3]Artstein-Avidan, S.; Giannopoulos, A.; Milman, V. D., Asymptotic Geometric Analysis. Part I, Mathematical Surveys and Monographs, vol. 202 (2015), American Mathematical Society: American Mathematical Society Providence, RI ·Zbl 1337.52001
[4]Bobkov, S., On concentration of distributions of random weighted sums, Ann. Probab., 31, 1, 195-215 (2003) ·Zbl 1015.60019
[5]Brazitikos, S.; Giannopoulos, A.; Valettas, P.; Vritsiou, B.-H., Geometry of Isotropic Convex Bodies, Mathematical Surveys and Monographs, vol. 196 (2014), American Mathematical Society: American Mathematical Society Providence, RI ·Zbl 1304.52001
[6]Chen, Y., An almost constant lower bound of the isoperimetric coefficient in the KLS conjecture, Geom. Funct. Anal., 31, 1, 34-61 (2021) ·Zbl 1495.52003
[7]Diaconis, P.; Freedman, D., Asymptotics of graphical projection pursuit, Ann. Stat., 12, 3, 793-815 (1984) ·Zbl 0559.62002
[8]Guédon, O.; Milman, E., Interpolating thin-shell and sharp large-deviation estimates for isotropic log-concave measures, Geom. Funct. Anal., 21, 5, 1043-1068 (2011) ·Zbl 1242.60012
[9]Johnson, W. B.; Lindenstrauss, J., Extensions of Lipschitz mappings into a Hilbert space, (Conference in Modern Analysis and Probability. Conference in Modern Analysis and Probability, New Haven, Conn., 1982. Conference in Modern Analysis and Probability. Conference in Modern Analysis and Probability, New Haven, Conn., 1982, Contemp. Math., vol. 26 (1984), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 189-206 ·Zbl 0539.46017
[10]Klartag, B., A central limit theorem for convex sets, Invent. Math., 168, 1, 91-131 (2007) ·Zbl 1144.60021
[11]Mendelson, S., Upper bounds on product and multiplier empirical processes, Stoch. Process. Appl., 126, 12, 3652-3680 (2016) ·Zbl 1386.60077
[12]Mendelson, S., Column randomization and almost-isometric embeddings (2021), arXiv preprint
[13]Mendelson, S.; Paouris, G., On the singular values of random matrices, J. Eur. Math. Soc., 16, 4, 823-834 (2014) ·Zbl 1290.60006
[14]Milman, V. D., A new proof of A. Dvoretzky’s theorem on cross-sections of convex bodies, Funkc. Anal. Prilozh., 5, 4, 28-37 (1971)
[15]Pisier, G., The Volume of Convex Bodies and Banach Space Geometry, Cambridge Tracts in Mathematics, vol. 94 (1989), Cambridge University Press: Cambridge University Press Cambridge ·Zbl 0698.46008
[16]Sudakov, V., Typical distributions of linear functionals in finite-dimensional spaces of high dimension, Dokl. Akad. Nauk SSSR, 243, 6, 1402-1405 (1978) ·Zbl 0416.60005
[17]Talagrand, M., Upper and Lower Bounds for Stochastic Processes: Modern Methods and Classical Problems, vol. 60 (2014), Springer Science & Business Media ·Zbl 1293.60001
[18]Tikhomirov, K., Sample covariance matrices of heavy-tailed distributions, Int. Math. Res. Not. IMRN, 20, 6254-6289 (2018) ·Zbl 1462.62330
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp