46B09 | Probabilistic methods in Banach space theory |
60B20 | Random matrices (probabilistic aspects) |
46N30 | Applications of functional analysis in probability theory and statistics |
52A23 | Asymptotic theory of convex bodies |
60G99 | Stochastic processes |
[1] | Adamczak, R.; Litvak, A. E.; Pajor, A.; Tomczak-Jaegermann, N., Quantitative estimates of the convergence of the empirical covariance matrix in log-concave ensembles, J. Am. Math. Soc., 23, 2, 535-561 (2010) ·Zbl 1206.60006 |
[2] | Anttila, M.; Ball, K.; Perissinaki, I., The central limit problem for convex bodies, Trans. Am. Math. Soc., 355, 12, 4723-4735 (2003) ·Zbl 1033.52003 |
[3] | Artstein-Avidan, S.; Giannopoulos, A.; Milman, V. D., Asymptotic Geometric Analysis. Part I, Mathematical Surveys and Monographs, vol. 202 (2015), American Mathematical Society: American Mathematical Society Providence, RI ·Zbl 1337.52001 |
[4] | Bobkov, S., On concentration of distributions of random weighted sums, Ann. Probab., 31, 1, 195-215 (2003) ·Zbl 1015.60019 |
[5] | Brazitikos, S.; Giannopoulos, A.; Valettas, P.; Vritsiou, B.-H., Geometry of Isotropic Convex Bodies, Mathematical Surveys and Monographs, vol. 196 (2014), American Mathematical Society: American Mathematical Society Providence, RI ·Zbl 1304.52001 |
[6] | Chen, Y., An almost constant lower bound of the isoperimetric coefficient in the KLS conjecture, Geom. Funct. Anal., 31, 1, 34-61 (2021) ·Zbl 1495.52003 |
[7] | Diaconis, P.; Freedman, D., Asymptotics of graphical projection pursuit, Ann. Stat., 12, 3, 793-815 (1984) ·Zbl 0559.62002 |
[8] | Guédon, O.; Milman, E., Interpolating thin-shell and sharp large-deviation estimates for isotropic log-concave measures, Geom. Funct. Anal., 21, 5, 1043-1068 (2011) ·Zbl 1242.60012 |
[9] | Johnson, W. B.; Lindenstrauss, J., Extensions of Lipschitz mappings into a Hilbert space, (Conference in Modern Analysis and Probability. Conference in Modern Analysis and Probability, New Haven, Conn., 1982. Conference in Modern Analysis and Probability. Conference in Modern Analysis and Probability, New Haven, Conn., 1982, Contemp. Math., vol. 26 (1984), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 189-206 ·Zbl 0539.46017 |
[10] | Klartag, B., A central limit theorem for convex sets, Invent. Math., 168, 1, 91-131 (2007) ·Zbl 1144.60021 |
[11] | Mendelson, S., Upper bounds on product and multiplier empirical processes, Stoch. Process. Appl., 126, 12, 3652-3680 (2016) ·Zbl 1386.60077 |
[12] | Mendelson, S., Column randomization and almost-isometric embeddings (2021), arXiv preprint |
[13] | Mendelson, S.; Paouris, G., On the singular values of random matrices, J. Eur. Math. Soc., 16, 4, 823-834 (2014) ·Zbl 1290.60006 |
[14] | Milman, V. D., A new proof of A. Dvoretzky’s theorem on cross-sections of convex bodies, Funkc. Anal. Prilozh., 5, 4, 28-37 (1971) |
[15] | Pisier, G., The Volume of Convex Bodies and Banach Space Geometry, Cambridge Tracts in Mathematics, vol. 94 (1989), Cambridge University Press: Cambridge University Press Cambridge ·Zbl 0698.46008 |
[16] | Sudakov, V., Typical distributions of linear functionals in finite-dimensional spaces of high dimension, Dokl. Akad. Nauk SSSR, 243, 6, 1402-1405 (1978) ·Zbl 0416.60005 |
[17] | Talagrand, M., Upper and Lower Bounds for Stochastic Processes: Modern Methods and Classical Problems, vol. 60 (2014), Springer Science & Business Media ·Zbl 1293.60001 |
[18] | Tikhomirov, K., Sample covariance matrices of heavy-tailed distributions, Int. Math. Res. Not. IMRN, 20, 6254-6289 (2018) ·Zbl 1462.62330 |