33E20 | Other functions defined by series and integrals |
41A58 | Series expansions (e.g., Taylor, Lidstone series, but not Fourier series) |
60E05 | Probability distributions: general theory |
[1] | Z. Chen, A new two-parameter lifetime distribution with bathtub shape or increasing failure rate function, Statist. Probab. Lett. 49 (2000), 155-161. ·Zbl 0954.62117 |
[2] | L. Comtet, “Advanced Combinatorics. The art of finite and infinite expansions”, Revised and enlarged edition. D. Reidel Pubishing Corporation, Dordrecht, 1974. ·Zbl 0283.05001 |
[3] | K. Diethelm, N. J. Ford, A. D. Freed, Y. Luchko, Algorithms for the fractional calculus: A selection of numerical methods, Comp. Meth. Appl. Mech. Eng. 194 (2005), 743-773. ·Zbl 1119.65352 |
[4] | E. R. Hansen, “A Table of Series and Products”, Prentice-Hall, Englewood Cliffs, New Jersey, 1975. ·Zbl 0438.00001 |
[5] | C. Jordan, “Calculus of Finite Differences”, Second edition. Chelsea Publishing Cor-poration, New York, 1950. ·Zbl 0041.05401 |
[6] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, “Theory and Applications of Fractional Differential Equations”, North-Holland Mathematical Studies, Vol. 204. Elsevier (North-Holland) Science Publishers, Amsterdam, 2006. ·Zbl 1092.45003 |
[7] | A. Lenart, The moments of the Gompertz distribution and maximum likelihood es-timation of its parameters, Scand. Actuar. J. 3 (2014), 255-277. ·Zbl 1401.62210 |
[8] | S.-D. Lin, H. M. Srivastava, Some families of the Hurwitz-Lerch Zeta functions and associated fractional derivative and other integral representations, Appl. Math. Comput. 154 (2004), 725-733. ·Zbl 1078.11054 |
[9] | N. W. McLachlan, P. Humbert, L. Poli, “Supplément au formulaire pour le calcul symbolique”, Mémor Sci Math 113. Gauthier-Villars, Paris, 1950. ·Zbl 0039.32804 |
[10] | C. S. Meijer, On the G-function I-VIII. Proc. Kon. Ned. Akad. Wet. 49 (1946), 227-237; 344-356; 457-469; 632-641; 765-772; 936-943; 1063-1072; 1165-1175. ·Zbl 0060.19901 |
[11] | M. Milgram, The generalized integro-exponential function, Math. Comput. 44(170) (1985), 443-458. ·Zbl 0593.33001 |
[12] | A. R. Miller, I. S. Moskowitz, Reduction of a class of Fox-Wright Psi functions for certain rational parameters, Comput. Math. Appl. 30 (1996), 73-82. ·Zbl 0839.33003 |
[13] | D. A. Murio, Stable numerical evaluation of Grünwald-Letnikov fractional derivatives applied to a fractional IHCP, Inverse Prob. Sci. Eng. 17 (2009), 229-243. ·Zbl 1159.65313 |
[14] | S. Nadarajah, On the moments of the modified Weibull distribution, Reliability Enginering & System Safety 90 (2005), 114-117. |
[15] | M. D. Ortigueira, A coherent approach to non-integer order derivatives, Signal Process. 86 (2006), 2505-2515. ·Zbl 1172.26304 |
[16] | A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, “Integral and Series, vol. 4. Direct Laplace Transforms”, Gordon and Breach Science Publishers, New York, 1992. ·Zbl 0786.44003 |
[17] | S. G. Samko, A. A. Kilbas, O. I. Marichev, “Fractional Integrals and Derivatives: Theory and Applications”, Gordon and Breach, New York, 1993. ·Zbl 0818.26003 |
[18] | A. D. Sokal, A ridiculously simple and explicit implicit function theorem, Sèm. Lothar. Combin. 61A (2009), Art. B61Ad, 21 pp. ·Zbl 1182.30006 |
[19] | E. Sousa, How to approximate the fractional derivative of order 1 < α < 2. In “Pro-ceedings of the 4th IFAC Workshop Fractional Differentiation and its Applications” (I. Podlubny, B. M. Vinagre Jara, Y. Q. Chen, V. Feliu Batlle and I. Tejado Balsera Eds.), Bajadoz, Spain, October 8-10. Article number FDA10-019; 2010. |
[20] | H. M. Srivastava, R. K. Saxena, T. K. Pogány, R. Saxena, Integral and computa-tional representations of the extended Hurwitz-Lerch zeta function, Integral Trans-forms Spec. Funct. 22 (2011), 487-506. ·Zbl 1242.11065 |
[21] | E. T. Whittaker, G. N. Watson, “A Course of Modern Analysis”, Third edition. Cambridge University Press, London, 1920. ·JFM 47.0190.17 |
[22] | M. Xie, Y. Tong, T. N. Goh, A modified Weibull extension with bathtub-shaped failure rate function, Reliability Engineering & System Safety 76 (2002), 279-285 |