Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Extension of generalized integro-exponential function and its application in study of Chen distribution.(English)Zbl 1499.33088

Summary: In [Stat. Probab. Lett. 49, No. 2, 155–161 (2000;Zbl 0954.62117)]Z. Chen introduced a two-parameter lifetime model and has reported only a few mathematical properties moments, quantile and generating functions, among others. In this article, we derive a power series expansion for newly introduced real upper parameter generalized integro-exponential function \(E^p_s(z)\) extending certain Milgram’s findings. By our novel results we derive closed-form expressions for the moments, generating function, Rényi entropy and power series for the quantile function of the Chen distribution.

MSC:

33E20 Other functions defined by series and integrals
41A58 Series expansions (e.g., Taylor, Lidstone series, but not Fourier series)
60E05 Probability distributions: general theory

Citations:

Zbl 0954.62117

Cite

References:

[1]Z. Chen, A new two-parameter lifetime distribution with bathtub shape or increasing failure rate function, Statist. Probab. Lett. 49 (2000), 155-161. ·Zbl 0954.62117
[2]L. Comtet, “Advanced Combinatorics. The art of finite and infinite expansions”, Revised and enlarged edition. D. Reidel Pubishing Corporation, Dordrecht, 1974. ·Zbl 0283.05001
[3]K. Diethelm, N. J. Ford, A. D. Freed, Y. Luchko, Algorithms for the fractional calculus: A selection of numerical methods, Comp. Meth. Appl. Mech. Eng. 194 (2005), 743-773. ·Zbl 1119.65352
[4]E. R. Hansen, “A Table of Series and Products”, Prentice-Hall, Englewood Cliffs, New Jersey, 1975. ·Zbl 0438.00001
[5]C. Jordan, “Calculus of Finite Differences”, Second edition. Chelsea Publishing Cor-poration, New York, 1950. ·Zbl 0041.05401
[6]A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, “Theory and Applications of Fractional Differential Equations”, North-Holland Mathematical Studies, Vol. 204. Elsevier (North-Holland) Science Publishers, Amsterdam, 2006. ·Zbl 1092.45003
[7]A. Lenart, The moments of the Gompertz distribution and maximum likelihood es-timation of its parameters, Scand. Actuar. J. 3 (2014), 255-277. ·Zbl 1401.62210
[8]S.-D. Lin, H. M. Srivastava, Some families of the Hurwitz-Lerch Zeta functions and associated fractional derivative and other integral representations, Appl. Math. Comput. 154 (2004), 725-733. ·Zbl 1078.11054
[9]N. W. McLachlan, P. Humbert, L. Poli, “Supplément au formulaire pour le calcul symbolique”, Mémor Sci Math 113. Gauthier-Villars, Paris, 1950. ·Zbl 0039.32804
[10]C. S. Meijer, On the G-function I-VIII. Proc. Kon. Ned. Akad. Wet. 49 (1946), 227-237; 344-356; 457-469; 632-641; 765-772; 936-943; 1063-1072; 1165-1175. ·Zbl 0060.19901
[11]M. Milgram, The generalized integro-exponential function, Math. Comput. 44(170) (1985), 443-458. ·Zbl 0593.33001
[12]A. R. Miller, I. S. Moskowitz, Reduction of a class of Fox-Wright Psi functions for certain rational parameters, Comput. Math. Appl. 30 (1996), 73-82. ·Zbl 0839.33003
[13]D. A. Murio, Stable numerical evaluation of Grünwald-Letnikov fractional derivatives applied to a fractional IHCP, Inverse Prob. Sci. Eng. 17 (2009), 229-243. ·Zbl 1159.65313
[14]S. Nadarajah, On the moments of the modified Weibull distribution, Reliability Enginering & System Safety 90 (2005), 114-117.
[15]M. D. Ortigueira, A coherent approach to non-integer order derivatives, Signal Process. 86 (2006), 2505-2515. ·Zbl 1172.26304
[16]A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, “Integral and Series, vol. 4. Direct Laplace Transforms”, Gordon and Breach Science Publishers, New York, 1992. ·Zbl 0786.44003
[17]S. G. Samko, A. A. Kilbas, O. I. Marichev, “Fractional Integrals and Derivatives: Theory and Applications”, Gordon and Breach, New York, 1993. ·Zbl 0818.26003
[18]A. D. Sokal, A ridiculously simple and explicit implicit function theorem, Sèm. Lothar. Combin. 61A (2009), Art. B61Ad, 21 pp. ·Zbl 1182.30006
[19]E. Sousa, How to approximate the fractional derivative of order 1 < α < 2. In “Pro-ceedings of the 4th IFAC Workshop Fractional Differentiation and its Applications” (I. Podlubny, B. M. Vinagre Jara, Y. Q. Chen, V. Feliu Batlle and I. Tejado Balsera Eds.), Bajadoz, Spain, October 8-10. Article number FDA10-019; 2010.
[20]H. M. Srivastava, R. K. Saxena, T. K. Pogány, R. Saxena, Integral and computa-tional representations of the extended Hurwitz-Lerch zeta function, Integral Trans-forms Spec. Funct. 22 (2011), 487-506. ·Zbl 1242.11065
[21]E. T. Whittaker, G. N. Watson, “A Course of Modern Analysis”, Third edition. Cambridge University Press, London, 1920. ·JFM 47.0190.17
[22]M. Xie, Y. Tong, T. N. Goh, A modified Weibull extension with bathtub-shaped failure rate function, Reliability Engineering & System Safety 76 (2002), 279-285
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp