[1] | Akasaka, T. and Kashiwara, M., Finite-dimensional representations of quantum affine algebras, Publ. RIMS Kyoto Univ.33 (1997), 839-867. ·Zbl 0915.17011 |
[2] | Berenstein, A. and Zelevinsky, A., Quantum cluster algebras, Adv. Math.195 (2005), 405-455. ·Zbl 1124.20028 |
[3] | Buan, A. B. and Marsh, R., Cluster-tilting theory, in Trends in representation theory of algebras and related topics, (American Mathematical Society, Providence, RI, 2006), 1-30. ·Zbl 1111.16014 |
[4] | Cautis, S. and Williams, H., Cluster theory of the coherent Satake category, J. Amer. Math. Soc.32 (2019), 709-778. ·Zbl 1442.22022 |
[5] | Chari, V., Braid group actions and tensor products, Int. Math. Res. Not. IMRN2002 (2010), 357-382. ·Zbl 0990.17009 |
[6] | Chari, V. and Pressley, A., Quantum affine algebras, Commun. Math. Phys.142 (1991), 261-283. ·Zbl 0739.17004 |
[7] | Chari, V. and Pressley, A., A guide to quantum groups (Cambridge University Press, 1994). ·Zbl 0839.17009 |
[8] | Date, E. and Okado, M., Calculation of excitation spectra of the spin model related with the vector representation of the quantized affine algebra of type A^(1)_n, Int. J. Modern Phys. A9 (1994), 399-417. ·Zbl 0986.82500 |
[9] | Fock, V. V. and Goncharov, A. B., Cluster X-varieties, amalgamation, and Poisson-Lie groups, in Algebraic geometry and number theory, (Birkhäuser, Boston, MA, 2006), 27-68. ·Zbl 1162.22014 |
[10] | Fomin, S. and Reading, N., Generalized cluster complexes and Coxeter combinatorics, Int. Math. Res. Not. IMRN (2005), 2709-2757. ·Zbl 1117.52017 |
[11] | Fomin, S. and Zelevinsky, A., Cluster algebras I. Foundations, J. Amer. Math. Soc.15 (2002), 497-529. ·Zbl 1021.16017 |
[12] | Fomin, S. and Zelevinsky, A., Y-systems and generalized associahedra, Ann. of Math. (2)158 (2003), 977-1018. ·Zbl 1057.52003 |
[13] | Frenkel, E. and Hernandez, D., Baxter’s relations and spectra of quantum integrable models, Duke Math. J.164 (2015), 2407-2460. ·Zbl 1332.82022 |
[14] | Frenkel, I. and Reshetikhin, N., Quantum affine algebras and holonomic difference equations, Commun. Math. Phys.146 (1992), 1-60. ·Zbl 0760.17006 |
[15] | Frenkel, E. and Reshetikhin, N. Yu., The q-characters of representations of quantum affine algebras deformations of W-algebras, Recent developments in quantum affine algebras and related topics, Contemp. Math.248 (1999), 163-205. ·Zbl 0973.17015 |
[16] | Fujita, R., Geometric realization of Dynkin quiver type quantum affine Schur-Weyl duality, Int. Math. Res. Not. IMRN (2018), rny226. ·Zbl 1479.16009 |
[17] | Geiß, C., Leclerc, B. and Schröer, J., Cluster structures on quantum coordinate rings, Selecta Math. (N.S.)19 (2013), 337-397. ·Zbl 1318.13038 |
[18] | Geiß, C., Leclerc, B. and Schröer, J., Factorial cluster algebras, Doc. Math.18 (2013), 249-274. ·Zbl 1275.13018 |
[19] | Gekhtman, M., Shapiro, M. and Vainshtein, A., Cluster algebras and Poisson geometry, Mosc. Math. J.3 (2003), 899-934. ·Zbl 1057.53064 |
[20] | Ginzburg, V. and Vasserot, E., Langlands reciprocity for affine quantum groups of type A_n, Int. Math. Res. Not. IMRN3 (1993), 67-85. ·Zbl 0785.17014 |
[21] | Goodearl, K. R. and Yakimov, M. T., The Berenstein-Zelevinsky quantum cluster algebra conjecture, Preprint (2016), arXiv:1602.00498. ·Zbl 1471.13046 |
[22] | Hernandez, D., Simple tensor products, Invent. Math.181 (2010), 649-675. ·Zbl 1221.17015 |
[23] | Hernandez, D. and Leclerc, B., Cluster algebras and quantum affine algebras, Duke Math. J.154 (2010), 265-341. ·Zbl 1284.17010 |
[24] | Hernandez, D. and Leclerc, B., Monoidal categorifications of cluster algebras of type A and D, in Symmetries, integrable systems and representations, (Springer, 2013), 175-193. ·Zbl 1317.13052 |
[25] | Hernandez, D. and Leclerc, B., A cluster algebra approach to q-characters of Kirillov-Reshetikhin modules, J. Eur. Math. Soc. (JEMS)18 (2016), 1113-1159. ·Zbl 1405.17028 |
[26] | Kac, V., Infinite dimensional Lie algebras, third edition (Cambridge University Press, Cambridge, 1990). ·Zbl 0716.17022 |
[27] | Kang, S.-J., Kashiwara, M. and Kim, M., Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras II, Duke Math. J.164 (2015), 1549-1602. ·Zbl 1323.81046 |
[28] | Kang, S.-J., Kashiwara, M. and Kim, M., Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras, Invent. Math.211 (2018), 591-685. ·Zbl 1407.81108 |
[29] | Kang, S.-J., Kashiwara, M., Kim, M. and Oh, S.-J., Simplicity of heads and socles of tensor products, Compos. Math.151 (2015), 377-396. ·Zbl 1366.17014 |
[30] | Kang, S.-J., Kashiwara, M., Kim, M. and Oh, S.-J., Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras III, Proc. Lond. Math. Soc. (3)111 (2015), 420-444. ·Zbl 1322.81056 |
[31] | Kang, S.-J., Kashiwara, M., Kim, M. and Oh, S.-J., Monoidal categorification of cluster algebras, J. Amer. Math. Soc.31 (2018), 349-426. ·Zbl 1460.13039 |
[32] | Kang, S.-J., Kashiwara, M., Misra, K. C., Miwa, T., Nakashima, T. and Nakayashiki, A., Perfect crystals of quantum affine Lie algebras, Duke Math. J.68 (1992), 499-607. ·Zbl 0774.17017 |
[33] | Kashiwara, M., Bases cristallines, C. R. Acad. Sci, Paris Sér. I, Math.311 (1990), 277-280. ·Zbl 0724.17008 |
[34] | Kashiwara, M., On level zero representations of quantum affine algebras, Duke. Math. J.112 (2002), 117-175. ·Zbl 1033.17017 |
[35] | Kashiwara, M. and Kim, M., Laurent phenomenon and simple modules of quiver Hecke algebras, Compos. Math.155 (2019), 2263-2295. ·Zbl 1505.13034 |
[36] | Kashiwara, M., Kim, M. and Oh, S.-J., Monoidal categories of modules over quantum affine algebras of type A and B, Proc. Lond. Math. Soc. (3)118 (2019), 43-77. ·Zbl 1472.17054 |
[37] | Kashiwara, M., Kim, M., Oh, S.-J. and Park, E., Localizations for quiver Hecke algebras, Preprint (2019), arXiv:1901.09319. ·Zbl 1495.18020 |
[38] | Kashiwara, M., Kim, M., Oh, S.-J. and Park, E., Cluster algebra structures on module categories over quantum affine algebras, Preprint (2019), arXiv:1904.01264. |
[39] | Kashiwara, M., Misra, K. C., Okado, M. and Yamada, D., Perfect crystals for U_q(D_4^(3)), J. Algebra317 (2007), 392-423. ·Zbl 1140.17012 |
[40] | Kashiwara, M. and Oh, S.-J., Categorical relations between Langlands dual quantum affine algebras: doubly laced types, J. Algebraic Combin.49 (2019), 401-435. ·Zbl 1479.17027 |
[41] | Kazhdan, D. and Soibelman, Y., Representations of quantum affine algebras, Selecta Math. (N.S.)1 (1995), 537-595. ·Zbl 0842.17021 |
[42] | Khovanov, M. and Lauda, A., A diagrammatic approach to categorification of quantum groups I, Represent. Theory13 (2009), 309-347. ·Zbl 1188.81117 |
[43] | Khovanov, M. and Lauda, A., A diagrammatic approach to categorification of quantum groups II, Trans. Amer. Math. Soc.363 (2011), 2685-2700. ·Zbl 1214.81113 |
[44] | Leclerc, B., Imaginary vectors in the dual canonical basis of U_q(n), Transform. Groups8 (2003), 95-104. ·Zbl 1044.17009 |
[45] | Lee, K. and Schiffler, R., Positivity for cluster algebras, Ann. of Math. (2)182 (2015), 73-125. ·Zbl 1350.13024 |
[46] | Lusztig, G., Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc.3 (1990), 447-498. ·Zbl 0703.17008 |
[47] | Nakajima, H., Quiver varieties and finite-dimensional representations of quantum affine algebras, J. Amer. Math. Soc.14 (2001), 145-238. ·Zbl 0981.17016 |
[48] | Nakajima, H., Quiver varieties and cluster algebras, Kyoto J. Math.51 (2011), 71-126. ·Zbl 1223.13013 |
[49] | Oh, S.-J., The denominators of normalized R-matrices of types A_2n-1^(2) , A_2n^(2) , B_n^(1) and D_n+1^(2), Publ. RIMS Kyoto Univ.51 (2015), 709-744. ·Zbl 1337.81080 |
[50] | Oh, S.-J. and Scrimshaw, T., Categorical relations between Langlands dual quantum affine algebras: exceptional cases, Comm. Math. Phys.368 (2019), 295-367. ·Zbl 1439.81063 |
[51] | Qin, F., Triangular bases in quantum cluster algebras and monoidal categorification conjectures, Duke Math. J.166 (2017), 2337-2442. ·Zbl 1454.13037 |
[52] | Rouquier, R., 2-Kac-Moody algebras, Preprint (2008), arXiv:0812.5023v1. ·Zbl 1213.20007 |
[53] | Rouquier, R., Quiver Hecke algebras and 2-Lie algebras, Algebra Colloq.19 (2012), 359-410. ·Zbl 1247.20002 |
[54] | Yamane, S., Perfect crystals of U_q(G_2^(1)), J. Algebra210 (1998), 440-486. ·Zbl 0929.17013 |