Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Monoidal categorification and quantum affine algebras.(English)Zbl 1497.17020

Authors’ abstract: We introduce and investigate new invariants of pairs of modules \(M\) and \(N\) over quantum affine algebras \(U'_q (\mathfrak{g})\) by analyzing their associated \(R\)-matrices. Using these new invariants, we provide a criterion for a monoidal category of finite-dimensional integrable \(U'_q (\mathfrak{g})\)-modules to become a monoidal categorification of a cluster algebra.

MSC:

17B37 Quantum groups (quantized enveloping algebras) and related deformations
13F60 Cluster algebras
18N25 Categorification

Cite

References:

[1]Akasaka, T. and Kashiwara, M., Finite-dimensional representations of quantum affine algebras, Publ. RIMS Kyoto Univ.33 (1997), 839-867. ·Zbl 0915.17011
[2]Berenstein, A. and Zelevinsky, A., Quantum cluster algebras, Adv. Math.195 (2005), 405-455. ·Zbl 1124.20028
[3]Buan, A. B. and Marsh, R., Cluster-tilting theory, in Trends in representation theory of algebras and related topics, (American Mathematical Society, Providence, RI, 2006), 1-30. ·Zbl 1111.16014
[4]Cautis, S. and Williams, H., Cluster theory of the coherent Satake category, J. Amer. Math. Soc.32 (2019), 709-778. ·Zbl 1442.22022
[5]Chari, V., Braid group actions and tensor products, Int. Math. Res. Not. IMRN2002 (2010), 357-382. ·Zbl 0990.17009
[6]Chari, V. and Pressley, A., Quantum affine algebras, Commun. Math. Phys.142 (1991), 261-283. ·Zbl 0739.17004
[7]Chari, V. and Pressley, A., A guide to quantum groups (Cambridge University Press, 1994). ·Zbl 0839.17009
[8]Date, E. and Okado, M., Calculation of excitation spectra of the spin model related with the vector representation of the quantized affine algebra of type A^(1)_n, Int. J. Modern Phys. A9 (1994), 399-417. ·Zbl 0986.82500
[9]Fock, V. V. and Goncharov, A. B., Cluster X-varieties, amalgamation, and Poisson-Lie groups, in Algebraic geometry and number theory, (Birkhäuser, Boston, MA, 2006), 27-68. ·Zbl 1162.22014
[10]Fomin, S. and Reading, N., Generalized cluster complexes and Coxeter combinatorics, Int. Math. Res. Not. IMRN (2005), 2709-2757. ·Zbl 1117.52017
[11]Fomin, S. and Zelevinsky, A., Cluster algebras I. Foundations, J. Amer. Math. Soc.15 (2002), 497-529. ·Zbl 1021.16017
[12]Fomin, S. and Zelevinsky, A., Y-systems and generalized associahedra, Ann. of Math. (2)158 (2003), 977-1018. ·Zbl 1057.52003
[13]Frenkel, E. and Hernandez, D., Baxter’s relations and spectra of quantum integrable models, Duke Math. J.164 (2015), 2407-2460. ·Zbl 1332.82022
[14]Frenkel, I. and Reshetikhin, N., Quantum affine algebras and holonomic difference equations, Commun. Math. Phys.146 (1992), 1-60. ·Zbl 0760.17006
[15]Frenkel, E. and Reshetikhin, N. Yu., The q-characters of representations of quantum affine algebras deformations of W-algebras, Recent developments in quantum affine algebras and related topics, Contemp. Math.248 (1999), 163-205. ·Zbl 0973.17015
[16]Fujita, R., Geometric realization of Dynkin quiver type quantum affine Schur-Weyl duality, Int. Math. Res. Not. IMRN (2018), rny226. ·Zbl 1479.16009
[17]Geiß, C., Leclerc, B. and Schröer, J., Cluster structures on quantum coordinate rings, Selecta Math. (N.S.)19 (2013), 337-397. ·Zbl 1318.13038
[18]Geiß, C., Leclerc, B. and Schröer, J., Factorial cluster algebras, Doc. Math.18 (2013), 249-274. ·Zbl 1275.13018
[19]Gekhtman, M., Shapiro, M. and Vainshtein, A., Cluster algebras and Poisson geometry, Mosc. Math. J.3 (2003), 899-934. ·Zbl 1057.53064
[20]Ginzburg, V. and Vasserot, E., Langlands reciprocity for affine quantum groups of type A_n, Int. Math. Res. Not. IMRN3 (1993), 67-85. ·Zbl 0785.17014
[21]Goodearl, K. R. and Yakimov, M. T., The Berenstein-Zelevinsky quantum cluster algebra conjecture, Preprint (2016), arXiv:1602.00498. ·Zbl 1471.13046
[22]Hernandez, D., Simple tensor products, Invent. Math.181 (2010), 649-675. ·Zbl 1221.17015
[23]Hernandez, D. and Leclerc, B., Cluster algebras and quantum affine algebras, Duke Math. J.154 (2010), 265-341. ·Zbl 1284.17010
[24]Hernandez, D. and Leclerc, B., Monoidal categorifications of cluster algebras of type A and D, in Symmetries, integrable systems and representations, (Springer, 2013), 175-193. ·Zbl 1317.13052
[25]Hernandez, D. and Leclerc, B., A cluster algebra approach to q-characters of Kirillov-Reshetikhin modules, J. Eur. Math. Soc. (JEMS)18 (2016), 1113-1159. ·Zbl 1405.17028
[26]Kac, V., Infinite dimensional Lie algebras, third edition (Cambridge University Press, Cambridge, 1990). ·Zbl 0716.17022
[27]Kang, S.-J., Kashiwara, M. and Kim, M., Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras II, Duke Math. J.164 (2015), 1549-1602. ·Zbl 1323.81046
[28]Kang, S.-J., Kashiwara, M. and Kim, M., Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras, Invent. Math.211 (2018), 591-685. ·Zbl 1407.81108
[29]Kang, S.-J., Kashiwara, M., Kim, M. and Oh, S.-J., Simplicity of heads and socles of tensor products, Compos. Math.151 (2015), 377-396. ·Zbl 1366.17014
[30]Kang, S.-J., Kashiwara, M., Kim, M. and Oh, S.-J., Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras III, Proc. Lond. Math. Soc. (3)111 (2015), 420-444. ·Zbl 1322.81056
[31]Kang, S.-J., Kashiwara, M., Kim, M. and Oh, S.-J., Monoidal categorification of cluster algebras, J. Amer. Math. Soc.31 (2018), 349-426. ·Zbl 1460.13039
[32]Kang, S.-J., Kashiwara, M., Misra, K. C., Miwa, T., Nakashima, T. and Nakayashiki, A., Perfect crystals of quantum affine Lie algebras, Duke Math. J.68 (1992), 499-607. ·Zbl 0774.17017
[33]Kashiwara, M., Bases cristallines, C. R. Acad. Sci, Paris Sér. I, Math.311 (1990), 277-280. ·Zbl 0724.17008
[34]Kashiwara, M., On level zero representations of quantum affine algebras, Duke. Math. J.112 (2002), 117-175. ·Zbl 1033.17017
[35]Kashiwara, M. and Kim, M., Laurent phenomenon and simple modules of quiver Hecke algebras, Compos. Math.155 (2019), 2263-2295. ·Zbl 1505.13034
[36]Kashiwara, M., Kim, M. and Oh, S.-J., Monoidal categories of modules over quantum affine algebras of type A and B, Proc. Lond. Math. Soc. (3)118 (2019), 43-77. ·Zbl 1472.17054
[37]Kashiwara, M., Kim, M., Oh, S.-J. and Park, E., Localizations for quiver Hecke algebras, Preprint (2019), arXiv:1901.09319. ·Zbl 1495.18020
[38]Kashiwara, M., Kim, M., Oh, S.-J. and Park, E., Cluster algebra structures on module categories over quantum affine algebras, Preprint (2019), arXiv:1904.01264.
[39]Kashiwara, M., Misra, K. C., Okado, M. and Yamada, D., Perfect crystals for U_q(D_4^(3)), J. Algebra317 (2007), 392-423. ·Zbl 1140.17012
[40]Kashiwara, M. and Oh, S.-J., Categorical relations between Langlands dual quantum affine algebras: doubly laced types, J. Algebraic Combin.49 (2019), 401-435. ·Zbl 1479.17027
[41]Kazhdan, D. and Soibelman, Y., Representations of quantum affine algebras, Selecta Math. (N.S.)1 (1995), 537-595. ·Zbl 0842.17021
[42]Khovanov, M. and Lauda, A., A diagrammatic approach to categorification of quantum groups I, Represent. Theory13 (2009), 309-347. ·Zbl 1188.81117
[43]Khovanov, M. and Lauda, A., A diagrammatic approach to categorification of quantum groups II, Trans. Amer. Math. Soc.363 (2011), 2685-2700. ·Zbl 1214.81113
[44]Leclerc, B., Imaginary vectors in the dual canonical basis of U_q(n), Transform. Groups8 (2003), 95-104. ·Zbl 1044.17009
[45]Lee, K. and Schiffler, R., Positivity for cluster algebras, Ann. of Math. (2)182 (2015), 73-125. ·Zbl 1350.13024
[46]Lusztig, G., Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc.3 (1990), 447-498. ·Zbl 0703.17008
[47]Nakajima, H., Quiver varieties and finite-dimensional representations of quantum affine algebras, J. Amer. Math. Soc.14 (2001), 145-238. ·Zbl 0981.17016
[48]Nakajima, H., Quiver varieties and cluster algebras, Kyoto J. Math.51 (2011), 71-126. ·Zbl 1223.13013
[49]Oh, S.-J., The denominators of normalized R-matrices of types A_2n-1^(2) , A_2n^(2) , B_n^(1) and D_n+1^(2), Publ. RIMS Kyoto Univ.51 (2015), 709-744. ·Zbl 1337.81080
[50]Oh, S.-J. and Scrimshaw, T., Categorical relations between Langlands dual quantum affine algebras: exceptional cases, Comm. Math. Phys.368 (2019), 295-367. ·Zbl 1439.81063
[51]Qin, F., Triangular bases in quantum cluster algebras and monoidal categorification conjectures, Duke Math. J.166 (2017), 2337-2442. ·Zbl 1454.13037
[52]Rouquier, R., 2-Kac-Moody algebras, Preprint (2008), arXiv:0812.5023v1. ·Zbl 1213.20007
[53]Rouquier, R., Quiver Hecke algebras and 2-Lie algebras, Algebra Colloq.19 (2012), 359-410. ·Zbl 1247.20002
[54]Yamane, S., Perfect crystals of U_q(G_2^(1)), J. Algebra210 (1998), 440-486. ·Zbl 0929.17013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp