Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Semisimplicity of theDS functor for the orthosymplectic Lie superalgebra.(English)Zbl 1497.17009

For a finite dimensional complex Lie superalgebra \(\mathfrak{g}\) and an odd nilpotent element \(x\), consider the cohomology of the complex \(V\stackrel{\rho(x)}{\longrightarrow} V\stackrel{\rho(x)}{\longrightarrow} V\) for \((V,\rho)\in \text{Rep}(\mathfrak{g})\). Duflo and Serganova defined a functor \(\mathrm{DS}_x: \text{Rep}(\mathfrak{g}) \to \text{Rep}(\mathfrak{g}_x)\), where \(\mathfrak{g}_x := \ker (\text{ad}(x)) / \text{im} (\text{ad}(x))\). For \(\mathfrak{osp}(m|2n)\), one has \(\mathfrak{g}_x \simeq \mathfrak{osp}(m-2k|2n-2k)\), where \(k\) is the rank of \(x\), so the DS-functor allows one to reduce questions about superdimensions to lower rank.
M. Gorelik and T. Heidersdorf prove that the Duflo-Serganova functor \(\mathrm{DS}_x\) attached to an odd nilpotent element \(x\) of \(\mathfrak{osp}(m|2n)\) sends a semisimple representation \(M\) of \(\mathfrak{osp}(m|2n)\) to a semisimple representation of \(\mathfrak{osp}(m-2k|2n-2k)\) where \(k\) is the rank of \(x\). They prove a closed formula for \(\mathrm{DS}_x(L(\lambda))\) in terms of the arc diagram attached to \(\lambda\).

MSC:

17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights)
17B20 Simple, semisimple, reductive (super)algebras
17B55 Homological methods in Lie (super)algebras
18M05 Monoidal categories, symmetric monoidal categories
18M25 Tannakian categories

Cite

References:

[1]Brundan, J.; Stroppel, C., Highest weight categories arising from Khovanov’s diagram algebra. IV: The general linear supergroup, J. Eur. Math. Soc., 14, 2 (2012) ·Zbl 1243.17004
[2]Comes, J.; Heidersdorf, T., Thick ideals in Deligne’s category \(\text{Rep}_{\_}( O_\delta)\), J. Algebra, 480 (2017) ·Zbl 1423.18021
[3]Duflo, M.; Serganova, V., On associated variety for Lie superalgebras
[4]Ehrig, M.; Stroppel, C., On the category of finite-dimensional representations of \(O S P(r | 2 n)\), (Krause, H.; etal., Representation Theory - Current Trends and Perspectives. Representation Theory - Current Trends and Perspectives, EMS Ser. Congr. Rep. (2017)), 109-170 ·Zbl 1425.17007
[5]Ehrig, M.; Stroppel, C., On the category of finite-dimensional representations of \(O S P(r | 2 n)\), Part II, available at
[6]Ehrig, M.; Stroppel, C., Nazarov-Wenzl algebras, coideal subalgebras and categorified skew Howe duality, Adv. Math., 331 (2018) ·Zbl 1432.16022
[7]Entova-Aizenbud, I.; Serganova, V., Duflo-Serganova functor and superdimension formula for the periplectic Lie superalgebra (2019), to appear in Algebra Number Theory
[8]Gorelik, M., Depths and cores in the light of DS-functors (2020)
[9]Gorelik, M., Bipartite extension graphs and the DS functor (2020)
[10]Gorelik, M.; Heidersdorf, T., Gruson-Serganova character formula and the Duflo-Serganova cohomology functor (2021)
[11]Gruson, C.; Serganova, V., Cohomology of generalized supergrassmanians and character formulae for basic classical Lie superalgebras, Proc. Lond. Math. Soc. (3), 101, 852-892 (2010) ·Zbl 1216.17005
[12]Gruson, C.; Serganova, V., Bernstein-Gelfand-Gelfand reciprocity and indecomposable projective modules for classical algebraic supergroups, Mosc. Math. J., 13, 2, 281-313 (2013) ·Zbl 1345.17009
[13]Heidersdorf, T., On supergroups and their semisimplified representation categories, Algebr. Represent. Theory, 22, 937-959 (2019) ·Zbl 1465.17011
[14]Heidersdorf, T.; Weissauer, R., Cohomological tensor functors on representations of the general linear supergroup, Mem. Am. Math. Soc., 270, Article 1320 pp. (2021) ·Zbl 1475.17013
[15]Heidersdorf, T.; Weissauer, R., On classical tensor categories attached to the irreducible representations of the general linear supergroups \(G L(n | n) (2018)\)
[16]Hoyt, C.; Reif, S., Grothendieck rings for Lie superalgebras and the Duflo-Serganova functor, Algebra Number Theory, 12, 9, 2167-2184 (2018) ·Zbl 1462.17014
[17]Serganova, V., On a superdimension of an irreducible representation of a basic classical Lie superalgebras, (Supersymmetry in Mathematics and Physics. Supersymmetry in Mathematics and Physics, Lecture Notes in Math., vol. 2027 (2011), Springer: Springer Heidelberg), 253-273 ·Zbl 1287.17020
[18]Serganova, V., Finite dimensional representations of algebraic supergroups, (Proceedings of the International Congress of Mathematicians ICM 2014, Seoul, Korea, August 13-21, 2014, vol. I: Plenary Lectures and Ceremonies (2014)) ·Zbl 1373.17023
[19]Weissauer, R., Model structures, categorical quotients and representations of super commutative Hopf algebras II, The case \(G L(m | n)\)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp