17B10 | Representations of Lie algebras and Lie superalgebras, algebraic theory (weights) |
17B20 | Simple, semisimple, reductive (super)algebras |
17B55 | Homological methods in Lie (super)algebras |
18M05 | Monoidal categories, symmetric monoidal categories |
18M25 | Tannakian categories |
[1] | Brundan, J.; Stroppel, C., Highest weight categories arising from Khovanov’s diagram algebra. IV: The general linear supergroup, J. Eur. Math. Soc., 14, 2 (2012) ·Zbl 1243.17004 |
[2] | Comes, J.; Heidersdorf, T., Thick ideals in Deligne’s category \(\text{Rep}_{\_}( O_\delta)\), J. Algebra, 480 (2017) ·Zbl 1423.18021 |
[3] | Duflo, M.; Serganova, V., On associated variety for Lie superalgebras |
[4] | Ehrig, M.; Stroppel, C., On the category of finite-dimensional representations of \(O S P(r | 2 n)\), (Krause, H.; etal., Representation Theory - Current Trends and Perspectives. Representation Theory - Current Trends and Perspectives, EMS Ser. Congr. Rep. (2017)), 109-170 ·Zbl 1425.17007 |
[5] | Ehrig, M.; Stroppel, C., On the category of finite-dimensional representations of \(O S P(r | 2 n)\), Part II, available at |
[6] | Ehrig, M.; Stroppel, C., Nazarov-Wenzl algebras, coideal subalgebras and categorified skew Howe duality, Adv. Math., 331 (2018) ·Zbl 1432.16022 |
[7] | Entova-Aizenbud, I.; Serganova, V., Duflo-Serganova functor and superdimension formula for the periplectic Lie superalgebra (2019), to appear in Algebra Number Theory |
[8] | Gorelik, M., Depths and cores in the light of DS-functors (2020) |
[9] | Gorelik, M., Bipartite extension graphs and the DS functor (2020) |
[10] | Gorelik, M.; Heidersdorf, T., Gruson-Serganova character formula and the Duflo-Serganova cohomology functor (2021) |
[11] | Gruson, C.; Serganova, V., Cohomology of generalized supergrassmanians and character formulae for basic classical Lie superalgebras, Proc. Lond. Math. Soc. (3), 101, 852-892 (2010) ·Zbl 1216.17005 |
[12] | Gruson, C.; Serganova, V., Bernstein-Gelfand-Gelfand reciprocity and indecomposable projective modules for classical algebraic supergroups, Mosc. Math. J., 13, 2, 281-313 (2013) ·Zbl 1345.17009 |
[13] | Heidersdorf, T., On supergroups and their semisimplified representation categories, Algebr. Represent. Theory, 22, 937-959 (2019) ·Zbl 1465.17011 |
[14] | Heidersdorf, T.; Weissauer, R., Cohomological tensor functors on representations of the general linear supergroup, Mem. Am. Math. Soc., 270, Article 1320 pp. (2021) ·Zbl 1475.17013 |
[15] | Heidersdorf, T.; Weissauer, R., On classical tensor categories attached to the irreducible representations of the general linear supergroups \(G L(n | n) (2018)\) |
[16] | Hoyt, C.; Reif, S., Grothendieck rings for Lie superalgebras and the Duflo-Serganova functor, Algebra Number Theory, 12, 9, 2167-2184 (2018) ·Zbl 1462.17014 |
[17] | Serganova, V., On a superdimension of an irreducible representation of a basic classical Lie superalgebras, (Supersymmetry in Mathematics and Physics. Supersymmetry in Mathematics and Physics, Lecture Notes in Math., vol. 2027 (2011), Springer: Springer Heidelberg), 253-273 ·Zbl 1287.17020 |
[18] | Serganova, V., Finite dimensional representations of algebraic supergroups, (Proceedings of the International Congress of Mathematicians ICM 2014, Seoul, Korea, August 13-21, 2014, vol. I: Plenary Lectures and Ceremonies (2014)) ·Zbl 1373.17023 |
[19] | Weissauer, R., Model structures, categorical quotients and representations of super commutative Hopf algebras II, The case \(G L(m | n)\) |