[1] | Auroux, D., Mirror symmetry and \(T\)-duality in the complement of an anticanonical divisor, J. Gökova Geom. Topol. GGT, 1, 51-91 (2007) ·Zbl 1181.53076 |
[2] | Beauville, A., Variétés Kähleriennes dont la première classe de Chern est nulle, J. Differ. Geom., 18, 4, 755-782 (1983) ·Zbl 0537.53056 ·doi:10.4310/jdg/1214438181 |
[3] | Bellamy, G., Schedler, T.: Symplectic resolutions of character varieties (2019). arXiv: 1909.12545 ·Zbl 1444.14007 |
[4] | Berkovich, VG, The automorphism group of the Drinfeld half-plane, C. R. Acad. Sci. Paris Sér. I Math., 321, 9, 1127-1132 (1995) ·Zbl 0856.14007 |
[5] | Birkar, C.; Cascini, P.; Hacon, CD; McKernan, J., Existence of minimal models for varieties of log general type, J. Am. Math. Soc., 23, 2, 405-468 (2010) ·Zbl 1210.14019 ·doi:10.1090/S0894-0347-09-00649-3 |
[6] | Boucksom, S.; de Fernex, T.; Favre, C.; Urbinati, S., Valuation spaces and multiplier ideals on singular varieties, Recent Advances in Algebraic Geometry, 29-51 (2015), Cambridge: Cambridge Univ. Press, Cambridge ·Zbl 1330.14025 ·doi:10.1017/CBO9781107416000.004 |
[7] | Boucksom, S.; Jonsson, M., Tropical and non-Archimedean limits of degenerating families of volume forms, J. École Polytech. Math., 4, 87-139 (2017) ·Zbl 1401.32019 ·doi:10.5802/jep.39 |
[8] | Boucksom, S., Jonsson, M.: A Non-archimedean Approach to K-Stability (2018). arXiv: 1805.11160 |
[9] | Brown, M.; Mazzon, E., The essential skeleton of a product of degenerations, Compos. Math., 155, 7, 1259-1300 (2019) ·Zbl 1440.14131 ·doi:10.1112/S0010437X19007346 |
[10] | Conrad, B.: From Normal Crossing to Strict Normal Crossing Divisors. Math 249B: Alterations. Stanford |
[11] | Cox, DA; Little, JB; Schenck, HK, Toric Varieties (2011), Providence, RI: American Mathematical Society, Providence, RI ·Zbl 1223.14001 |
[12] | de Cataldo, M., Projective compactification of Dolbeault moduli spaces, Int. Math. Res. Not. IMRN, 5, 3543-3570 (2021) ·Zbl 1474.14073 ·doi:10.1093/imrn/rnaa069 |
[13] | de Cataldo, M., Hausel, T., Migliorini, L.: Topology of Hitchin systems and Hodge theory of character varieties: the case \(A_1\). Ann. Math. (2) 175(3), 1329-1407 (2012) ·Zbl 1375.14047 |
[14] | de Cataldo, M.; Maulik, D., The perverse filtration for the Hitchin fibration is locally constant, Pure Appl. Math. Q., 16, 5, 1441-1464 (2020) ·Zbl 1462.53062 ·doi:10.4310/PAMQ.2020.v16.n5.a4 |
[15] | de Cataldo, M., Maulik, D., Shen, J.: Hitchin fibrations, abelian surfaces, and the P=W conjecture. To Appear at J. Am. Math. Soc. (2019). arXiv: 1909.11885 |
[16] | de Cataldo, M.; Migliorini, L., The perverse filtration and the Lefschetz hyperplane theorem, Ann. Math. (2), 171, 3, 2089-2113 (2010) ·Zbl 1213.14017 ·doi:10.4007/annals.2010.171.2089 |
[17] | de Fernex, T., Kollár, J., Xu, C.: The dual complex of singularities. In: Higher Dimensional Algebraic Geometry, In Honour of Professor Yujiro Kawamatas 60th Birthday, Vol. 74, pp. 103-130. Adv. Stud. Pure Math., (2017) |
[18] | Deligne, P., Rapoport, M.: Les Schémas de Modules de Courbes Elliptiques. In: Modular functions of one variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972). Lecture Notes in Math, vol. 349, pp. 143-316 (1973) ·Zbl 0281.14010 |
[19] | Donagi, R., Ein, L., Lazarsfeld, R.: Nilpotent cones and sheaves on \(K3\) surfaces. In: Birational algebraic geometry (Baltimore, MD, 1996). Contemp. Math, vol. 207, pp. 51-61. Amer. Math. Soc., Providence, RI (1997) ·Zbl 0907.32004 |
[20] | Durfee, AH, Neighborhoods of algebraic sets, Trans. Am. Math. Soc., 276, 2, 517-530 (1983) ·Zbl 0529.14013 ·doi:10.1090/S0002-9947-1983-0688959-3 |
[21] | Elzein, F.; Némethi, A., On the weight filtration of the homology of algebraic varieties: the generalized Leray cycles, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 1, 4, 869-903 (2002) ·Zbl 1098.14006 |
[22] | Evans, JD; Mauri, M., Constructing local models for Lagrangian torus fibrations, Ann. Henri Lebesgue, 4, 537-570 (2021) ·Zbl 1490.53099 ·doi:10.5802/ahl.80 |
[23] | Felisetti, C., Mauri, M.: \(P=W\) Conjectures for Character Varieties with Symplectic Resolution (2020). arXiv: 2006.08752 |
[24] | Fujino, O., Fundamental theorems for the log minimal model program, Publ. Res. Inst. Math. Sci., 47, 3, 727-789 (2011) ·Zbl 1234.14013 ·doi:10.2977/PRIMS/50 |
[25] | Goldman, W.M., Xia, E.Z.: Rank one Higgs bundles and representations of fundamental groups of Riemann surfaces. Mem. Amer. Math. Soc. 193(904), viii+69 (2008) ·Zbl 1158.14001 |
[26] | Goresky, M.; MacPherson, R., Intersection homology. II, Invent. Math., 72, 1, 77-129 (1983) ·Zbl 0529.55007 ·doi:10.1007/BF01389130 |
[27] | Harder, A.: Torus Fibers and the Weight Filtration (2019). arXiv: 1908.05110 |
[28] | Hatcher, A., Algebraic Topology (2002), Cambridge: Cambridge University Press, Cambridge ·Zbl 1044.55001 |
[29] | Hausel, T., Compactification of moduli of Higgs bundles, J. Reine Angew. Math., 503, 169-192 (1998) ·Zbl 0930.14016 ·doi:10.1515/crll.1998.096 |
[30] | Hitchin, N., Stable bundles and integrable systems, Duke Math. J., 54, 1, 91-114 (1987) ·Zbl 0627.14024 ·doi:10.1215/S0012-7094-87-05408-1 |
[31] | Hitchin, N.: The moduli space of special Lagrangian submanifolds. In: vol. 25. 3-4. Dedicated to Ennio De Giorgi. (1997), pp. 503-515 (1998) ·Zbl 1015.32022 |
[32] | de Jong, A., Smoothness, semi-stability and alterations, Inst. Hautes Études Sci. Publ. Math., 83, 51-93 (1996) ·Zbl 0916.14005 ·doi:10.1007/BF02698644 |
[33] | Jonsson, M., Mustaţă, M.: Valuations and asymptotic invariants for sequences of ideals. Ann. Inst. Fourier (Grenoble). 62(6), 2145-2209 (2012) ·Zbl 1272.14016 |
[34] | Katzarkov, L.; Noll, A.; Pandit, P.; Simpson, C., Harmonic maps to buildings and singular perturbation theory, Commun. Math. Phys., 336, 2, 853-903 (2015) ·Zbl 1314.32021 ·doi:10.1007/s00220-014-2276-6 |
[35] | Kollár, J.: Singularities of pairs. In: Algebraic Geometry—Santa Cruz 1995. Proc. Sympos. Pure Math, Vol. 62, pp. 221-287. Amer. Math. Soc., Providence, RI (1997) ·Zbl 0905.14002 |
[36] | Kollár, J.: New Examples of Terminal and Log Canonical Singularities (2011). arXiv: 1107.2864 |
[37] | Kollár, J.: Singularities of the minimal model program. Cambridge Tracts in Mathematics, vol. 200, pp. x+370. Cambridge University Press, Cambridge (2013) ·Zbl 1282.14028 |
[38] | Kollár, J.; Kovács, SJ, Log canonical singularities are Du Bois, J. Am. Math. Soc., 23, 3, 791-813 (2010) ·Zbl 1202.14003 ·doi:10.1090/S0894-0347-10-00663-6 |
[39] | Kollár, J.; Mori, S., Birational Geometry of Algebraic Varieties (2008), Cambridge: Cambridge University Press, Cambridge ·Zbl 1143.14014 |
[40] | Kollár, J.; Xu, C., The dual complex of Calabi-Yau pairs, Invent. Math., 205, 3, 527-557 (2016) ·Zbl 1360.14056 ·doi:10.1007/s00222-015-0640-6 |
[41] | Komyo, A., On compactifications of character varieties of \(n\)-punctured projective line, Ann. Inst. Fourier (Grenoble), 65, 4, 1493-1523 (2015) ·Zbl 1378.14045 ·doi:10.5802/aif.2965 |
[42] | Kontsevich, M.; Soibelman, Y.; Etingof, P.; Retakh, V.; Singer, IM, Affine Structures and non-archimedean analytic spaces, The Unity of Mathematics: In Honor of the Ninetieth Birthday of I.M. Gelfand, 321-385 (2006), Boston, MA: Birkhäuser Boston, Boston, MA ·Zbl 1114.14027 |
[43] | Li, Y.: Metric SYZ Conjecture and Non-archimedean Geometry (2020). arXiv: 2007.01384 |
[44] | Liu, Q., Algebraic Geometry and Arithmetic Curves (2002), Oxford: Oxford University Press, Oxford ·Zbl 0996.14005 |
[45] | Lurie, J.: Piecewise Linear Topology (Lecture 2). Topics in Geometric Topology (18.937). MIT (2009) |
[46] | Lurie, J.: Whitehead Triangulations (Lecture 3). Topics in Geometric Topology (18.937). MIT (2009) |
[47] | Mauri, M., The dual complex of log Calabi-Yau pairs on Mori fibre spaces, Adv. Math., 364, 107009 (2020) ·Zbl 1440.14076 ·doi:10.1016/j.aim.2020.107009 |
[48] | Mauri, M.: Intersection cohomology of rank 2 character varieties of surface groups. J. Inst. Math. Jussieu 1-40 (2021) ·Zbl 1475.14074 |
[49] | Mauri, M.: The geometry of dual complexes. PhD thesis. London School of Geometry and Number Theory (2019) |
[50] | Mauri, M.: The dual complex of singularities after de Fernex, Kollár and Xu. Arc Schemes Singul. Chap. 14, 231-255 (2020) ·Zbl 1440.14172 |
[51] | Mellit, A.: Cell Decompositions of Character Varieties (2019). arXiv: 1905.10685 |
[52] | Migliorini, L., Recent results and conjectures on the non abelian Hodge theory of curves, Boll. dell’Unione Mat. Ital., 10, 3, 467-485 (2017) ·Zbl 1386.14051 ·doi:10.1007/s40574-017-0122-4 |
[53] | Milnor, J., Topology from the Differentiable Viewpoint (1997), Princeton, NJ: Princeton University Press, Princeton, NJ ·Zbl 1025.57002 |
[54] | Mumford, D., The topology of normal singularities of an algebraic surface and a criterion for simplicity, Inst. Hautes Études Sci. Publ. Math., 9, 5-22 (1961) ·Zbl 0108.16801 ·doi:10.1007/BF02698717 |
[55] | Mustaţă, M.; Nicaise, J., Weight functions on non-Archimedean analytic spaces and the Kontsevich- Soibelman skeleton, Algebra Geom., 2, 3, 365-404 (2015) ·Zbl 1322.14044 ·doi:10.14231/AG-2015-016 |
[56] | Némethi, A., Szabó, S.: The Geometric \(P=W\) Conjecture in the Painlevé Cases via plumbing calculus. Int. Math. Res. Not, IMRN. 2022(5), 3201-3218 (2022) ·Zbl 1484.14074 |
[57] | Payne, S., Boundary complexes and weight filtrations, Mich. Math. J., 62, 2, 293-322 (2013) ·Zbl 1312.14049 ·doi:10.1307/mmj/1370870374 |
[58] | Rourke, C.; Sanderson, B., Introduction to Piecewise-Linear Topology (1982), Berlin-New York: Springer-Verlag, Berlin-New York ·Zbl 0477.57003 |
[59] | Simpson, C.: The Hodge filtration on nonabelian cohomology. In: Algebraic Geometry—Santa Cruz 1995. Proc. Sympos. Pure Math, Vol. 62, pp. 217-281. Am. Math. Soc., Providence, RI (1997) ·Zbl 0914.14003 |
[60] | Simpson, C., Moduli of representations of the fundamental group of a smooth projective variety. II, Inst. Hautes Études Sci. Publ. Math., 80, 1994, 5-79 (1995) ·Zbl 0891.14006 |
[61] | Simpson, C., The dual boundary complex of the SL2 character variety of a punctured sphere, Ann. Fac. Sci. Toulouse Math. (6), 25, 2-3, 317-361 (2016) ·Zbl 1352.14009 ·doi:10.5802/afst.1496 |
[62] | Szabó, S.: Simpson’s Geometric \(P=W\) Conjecture in the Painlevé VI Case via Abelianization (2019). arXiv: 1906.01856 |
[63] | Szabó, S., Perversity equals weight for Painlevé spaces, Adv. Math., 383, 107667 (2021) ·Zbl 1470.14068 ·doi:10.1016/j.aim.2021.107667 |
[64] | Szabó, S.: Toward the Geometric \(P = W\) Conjecture for the 5-Punctured Sphere in Rank 2 (2021). arXiv: 2103.00932 |
[65] | Thuillier, A., Géométrie toroïdale et géométrie analytique non archimédienne. Application au type d’homotopie de certains schémas formels, Manuscr. Math., 123, 4, 381-451 (2007) ·Zbl 1134.14018 ·doi:10.1007/s00229-007-0094-2 |
[66] | Whang, J., Global geometry on moduli of local systems for surfaces with boundary, Compos. Math., 156, 8, 1517-1559 (2020) ·Zbl 1446.14004 ·doi:10.1112/S0010437X20007241 |
[67] | Whitehead, JHC, On \(C1\)-complexes, Ann. Math. (2), 41, 809-824 (1940) ·JFM 66.0955.03 ·doi:10.2307/1968861 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.