Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e.g.functions,functorial, etc.). Otherwise the search isexact.
"Topological group"Phrases (multi-words) should be set in"straight quotation marks".
au: Bourbaki & ti: AlgebraSearch forauthor andtitle. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator | allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so: Eur* J* Mat* Soc* cc: 14Search for publications in a particularsource with aMathematics SubjectClassificationcode (cc) in14.
"Partial diff* eq*" ! ellipticThenot-operator! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set to books; alternatively:j forjournal articles,a forbook articles.
py: 2000-2015 cc: (94A | 11T)Numberranges are accepted. Terms can be grouped within(parentheses).
la: chineseFind documents in a givenlanguage.ISO 639-1 language codes can also be used.

Fields

anyanywhere
aninternal document identifier
auauthor, editor
aiinternal author identifier
tititle
lalanguage
sosource
abreview, abstract
pypublication year
rvreviewer
ccMSC code
utuncontrolled term
dtdocument type (j: journal article;b: book;a: book article)

Operators

a& blogic and
a| blogic or
!ablogic not
abc*right wildcard
"ab c"phrase
(ab c)parentheses

See also ourGeneral Help.

On the exponential Diophantine equation \(p^x+q^y=z^3\): theorems and conjectures.(English)Zbl 1496.11057

Giri, Debasis (ed.) et al., Proceedings of the seventh international conference on mathematics and computing, ICMC 2021, Shibpur, India, March 2–5, 2021. Singapore: Springer. Adv. Intell. Syst. Comput. 1412, 711-723 (2022).
Summary: In this work, we solve the Diophantine equations \(p^x+q^y=z^3\) in the set of nonnegative integers. We consider twin primes \(p \text{ and} q\) having the following forms:
(a)
twin primes of the form \(8N+1\) and \(8N+3\) for some \(N\in \mathbb{N}_0\),
(b)
twin primes of the form \(8N+3\) and \(8N+5\) for some \(N\in \mathbb{N}_0\),
(c)
twin primes of the form \(8N+5\) and \(8N+7\) for some \(N\in \mathbb{N}_0\), and
(d)
twin primes of the form \(8N+7\) and \(8N+9\) for some \(N\in \mathbb{N}_0\).
Theorems are established. Conjectures are provided for further studies.
For the entire collection see [Zbl 1491.65006].

MSC:

11D61 Exponential Diophantine equations

Cite

References:

[1]Bacani JB, Rabago JFT (2015) The complete set of solutions of the Diophantine equation \(p^x + q^y = z^2\) for twin primes \(p\) and \(q\). Int J Pure Appl Math 104(4):517-521. doi:10.12732/ijpam.v104i4.3
[2]Burshtein N (2017) On the infinitude of solutions to the Diophantine equation \(p^x + q^y = z^2\) when \(p = 2\) and \(p = 3.\) Ann Pure Appl Math 13(2):207-2010. doi:10.22457/apam.v13n2a6
[3]Peker, B.; Cenberci, S., On the Diophantine equations of \((2^n)^x + p^y = z^2\) type, Amer J Math Sci, 1, 1, 195-199 (2012) ·Zbl 1267.11032
[4]Peker, B.; Cenberci, S., Solution of the Diophantine equation \(4^x + p^y = z^{2n}\), Selcuk J Appl Math, 13, 2, 31-34 (2012) ·Zbl 1315.11021
[5]Chotchaisthit S (2013) On the Diophantine equation \(p^x + (p + 1)^y = z^2,\) where \(p\) is a Mersenne prime. Int J Pure Appl Math 88(2):169-172. doi:10.12732/ijpam.v88i2.2 ·Zbl 1279.11034
[6]Chotchaisthit S (2013) On the Diophantine equation \(2^x + 11^y = z^2\). Maejo Int J Sci Technol 7(2):291-293. http://www.thaiscience.info/journals/Article/MJST/10896385.pdf ·Zbl 1279.11034
[7]Khan MA, Rashid A, Uddin MS (2016) Non-negative integer solutions of two Diophantine equations \(2^x + 9^y = z^2\) and \(5^x + 9^y = z^2.\) J Appl Math Phys 4(4):762-765. doi:10.4236/jamp.2016.44086
[8]Metsänkylä, T., Catalan’s conjecture: another old Diophantine problem solved, Bull Am Math Soc, 41, 1, 43-57 (2004) ·Zbl 1081.11021 ·doi:10.1090/S0273-0979-03-00993-5
[9]Rabago JFT (2013) On two Diophantine equations \(3^x+19^y = z^2\) and \(3^x+91^y = z^2.\) Int J Math Sci Comput 3(1):28-29
[10]Rabago JFT (2013) On an open problem by B. Sroysang. Konuralp J Math 1(2):30-32. https://dergipark.org.tr/en/download/article-file/275620 ·Zbl 1280.11019
[11]Rabago JFT (2014) A note on two Diophantine equations \(17^x +19^y = z^2\) and \(71^x +73^y = z^2.\) Math J Interdiscip Sci 2(1):19-24. doi:10.15415/mjis.2013.21002
[12]Sroysang B (2012) On the Diophantine equation \(31^x+32^y = z^2.\) Int J Pure Appl Math 81(4):609-612. https://ijpam.eu/contents/2012-81-4/8/8.pdf ·Zbl 1279.11037
[13]Sroysang B (2012) On the Diophantine equation \(3^x + 5^y = z^2.\) Int J Pure Appl Math 81(4):605-608. https://ijpam.eu/contents/2012-81-4/7/7.pdf ·Zbl 1279.11036
[14]Sroysang B (2013) More on the Diophantine equation \(2^x + 3^y = z^2.\) Int J Pure Appl Math 84(2):133-137. doi:10.12732/ijpam.v84i2.11 ·Zbl 1291.11072
[15]Sroysang B (2013) On the Diophantine equation \(23^x+32^y = z^2.\) Int J Pure Appl Math 84(3):231-234. DOI:doi:10.12732/ijpam.v84i3.9 ·Zbl 1291.11074
[16]Sroysang B (2013) On the Diophantine equation \(47^x+49^y = z^2.\) Int. J Pure Appl Math 89(2):279-282. doi:10.12732/ijpam.v89i2.11 ·Zbl 1290.11071
[17]Sroysang B (2013) On the Diophantine equation \(5^x + 7^y = z^2.\) Int J Pure Appl Math 89(1):115-118. DOI:doi:10.12732/ijpam.v89i1.14 ·Zbl 1291.11073
[18]Sroysang B (2014) More on the Diophantine equation \(3^x + 85^y = z^2.\) Int J Pure Appl Math 91(1):131-134. doi:10.12732/ijpam.v91i1.13 ·Zbl 1286.11032
[19]Sroysang B (2014) On the Diophantine equation \(5^x + 43^y = z^2.\) Int J. Pure Appl Math 91(4):537-540. doi:10.12732/ijpam.v91i4.10 ·Zbl 1286.11038
[20]Sroysang B (2013) On the Diophantine equation \(89^x + 91^y = z^2.\) Int J Pure Appl Math 89(2):283-286. doi:10.12732/ijpam.v89i2.12 ·Zbl 1290.11072
[21]Weisstein EW (2004) Fermat’s last theorem. Wolfram Mathworld
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp