[1] | Bacani JB, Rabago JFT (2015) The complete set of solutions of the Diophantine equation \(p^x + q^y = z^2\) for twin primes \(p\) and \(q\). Int J Pure Appl Math 104(4):517-521. doi:10.12732/ijpam.v104i4.3 |
[2] | Burshtein N (2017) On the infinitude of solutions to the Diophantine equation \(p^x + q^y = z^2\) when \(p = 2\) and \(p = 3.\) Ann Pure Appl Math 13(2):207-2010. doi:10.22457/apam.v13n2a6 |
[3] | Peker, B.; Cenberci, S., On the Diophantine equations of \((2^n)^x + p^y = z^2\) type, Amer J Math Sci, 1, 1, 195-199 (2012) ·Zbl 1267.11032 |
[4] | Peker, B.; Cenberci, S., Solution of the Diophantine equation \(4^x + p^y = z^{2n}\), Selcuk J Appl Math, 13, 2, 31-34 (2012) ·Zbl 1315.11021 |
[5] | Chotchaisthit S (2013) On the Diophantine equation \(p^x + (p + 1)^y = z^2,\) where \(p\) is a Mersenne prime. Int J Pure Appl Math 88(2):169-172. doi:10.12732/ijpam.v88i2.2 ·Zbl 1279.11034 |
[6] | Chotchaisthit S (2013) On the Diophantine equation \(2^x + 11^y = z^2\). Maejo Int J Sci Technol 7(2):291-293. http://www.thaiscience.info/journals/Article/MJST/10896385.pdf ·Zbl 1279.11034 |
[7] | Khan MA, Rashid A, Uddin MS (2016) Non-negative integer solutions of two Diophantine equations \(2^x + 9^y = z^2\) and \(5^x + 9^y = z^2.\) J Appl Math Phys 4(4):762-765. doi:10.4236/jamp.2016.44086 |
[8] | Metsänkylä, T., Catalan’s conjecture: another old Diophantine problem solved, Bull Am Math Soc, 41, 1, 43-57 (2004) ·Zbl 1081.11021 ·doi:10.1090/S0273-0979-03-00993-5 |
[9] | Rabago JFT (2013) On two Diophantine equations \(3^x+19^y = z^2\) and \(3^x+91^y = z^2.\) Int J Math Sci Comput 3(1):28-29 |
[10] | Rabago JFT (2013) On an open problem by B. Sroysang. Konuralp J Math 1(2):30-32. https://dergipark.org.tr/en/download/article-file/275620 ·Zbl 1280.11019 |
[11] | Rabago JFT (2014) A note on two Diophantine equations \(17^x +19^y = z^2\) and \(71^x +73^y = z^2.\) Math J Interdiscip Sci 2(1):19-24. doi:10.15415/mjis.2013.21002 |
[12] | Sroysang B (2012) On the Diophantine equation \(31^x+32^y = z^2.\) Int J Pure Appl Math 81(4):609-612. https://ijpam.eu/contents/2012-81-4/8/8.pdf ·Zbl 1279.11037 |
[13] | Sroysang B (2012) On the Diophantine equation \(3^x + 5^y = z^2.\) Int J Pure Appl Math 81(4):605-608. https://ijpam.eu/contents/2012-81-4/7/7.pdf ·Zbl 1279.11036 |
[14] | Sroysang B (2013) More on the Diophantine equation \(2^x + 3^y = z^2.\) Int J Pure Appl Math 84(2):133-137. doi:10.12732/ijpam.v84i2.11 ·Zbl 1291.11072 |
[15] | Sroysang B (2013) On the Diophantine equation \(23^x+32^y = z^2.\) Int J Pure Appl Math 84(3):231-234. DOI:doi:10.12732/ijpam.v84i3.9 ·Zbl 1291.11074 |
[16] | Sroysang B (2013) On the Diophantine equation \(47^x+49^y = z^2.\) Int. J Pure Appl Math 89(2):279-282. doi:10.12732/ijpam.v89i2.11 ·Zbl 1290.11071 |
[17] | Sroysang B (2013) On the Diophantine equation \(5^x + 7^y = z^2.\) Int J Pure Appl Math 89(1):115-118. DOI:doi:10.12732/ijpam.v89i1.14 ·Zbl 1291.11073 |
[18] | Sroysang B (2014) More on the Diophantine equation \(3^x + 85^y = z^2.\) Int J Pure Appl Math 91(1):131-134. doi:10.12732/ijpam.v91i1.13 ·Zbl 1286.11032 |
[19] | Sroysang B (2014) On the Diophantine equation \(5^x + 43^y = z^2.\) Int J. Pure Appl Math 91(4):537-540. doi:10.12732/ijpam.v91i4.10 ·Zbl 1286.11038 |
[20] | Sroysang B (2013) On the Diophantine equation \(89^x + 91^y = z^2.\) Int J Pure Appl Math 89(2):283-286. doi:10.12732/ijpam.v89i2.12 ·Zbl 1290.11072 |
[21] | Weisstein EW (2004) Fermat’s last theorem. Wolfram Mathworld |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.