[1] | D. R. ADAMS, Traces of potentials arising from translation invariant operators, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 25 (1971), 203-217. MR287301 ·Zbl 0219.46027 |
[2] | , Traces of potentials. II, Indiana Univ. Math. J. 22 (1972/73), 907-918. http://dx. doi.org/10.1512/iumj.1973.22.22075. MR313783 ·Zbl 0265.46039 ·doi:10.1512/iumj.1973.22.22075.MR313783 |
[3] | D. R. ADAMS and L. I. HEDBERG, Function Spaces and Potential Theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 314, Springer-Verlag, Berlin, 1996. http://dx.doi.org/10.1007/978-3-662-03282-4. MR1411441 ·doi:10.1007/978-3-662-03282-4.MR1411441 |
[4] | L. AMBROSIO, N. FUSCO, and D. PALLARA, Functions of Bounded Variation and Free Discon-tinuity Problems, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2000. MR1857292 ·Zbl 0265.46039 ·doi:10.1512/iumj.1973.22.22075 |
[5] | G. ANZELLOTTI and M. GIAQUINTA, BV functions and traces, Rend. Sem. Mat. Univ. Padova 60 (1978), 1-21 (1979) (Italian, with English summary). MR555952 ·Zbl 0432.46031 |
[6] | , Existence of the displacement field for an elastoplastic body subject to Hencky’s law and von Mises yield condition, Manuscripta Math. 32 (1980), no. 1-2, 101-136. http://dx.doi.org/ 10.1007/BF01298185. MR592713 ·Zbl 0465.73022 ·doi:10.1007/978-3-662-03282-4 |
[7] | R. AYOUSH and M. WOJCIECHOWSKI, On dimension and regularity of bundle measures (August 2017), preprint, available at http://arxiv.org/abs/arXiv:1708.01458v2. |
[8] | J. BOURGAIN and H. BREZIS, New estimates for the Laplacian, the div-curl, and related Hodge systems, C. R. Math. Acad. Sci. Paris 338 (2004), no. 7, 539-543 (English, with English and French summaries). http://dx.doi.org/10.1016/j.crma.2003.12.031. MR2057026 ·Zbl 1101.35013 ·doi:10.1016/j.crma.2003.12.031.MR2057026 |
[9] | , New estimates for elliptic equations and Hodge type systems, J. Eur. Math. Soc. (JEMS) 9 (2007), no. 2, 277-315. http://dx.doi.org/10.4171/JEMS/80. MR2293957 ·Zbl 0465.73022 ·doi:10.1007/BF01298185 |
[10] | P. BOUSQUET and J. VAN SCHAFTINGEN, Hardy-Sobolev inequalities for vector fields and can-celing linear differential operators, Indiana Univ. Math. J. 63 (2014), no. 5, 1419-1445. http:// dx.doi.org/10.1512/iumj.2014.63.5395. MR3283556 ·Zbl 1325.46037 ·doi:10.1512/iumj.2014.63.5395.MR3283556 |
[11] | D. BREIT, L. DIENING, and F. GMEINEDER, On the trace operator for functions of bounded A-variation, Anal. PDE 13 (2020), no. 2, 559-594. http://dx.doi.org/10.2140/apde.2020. 13.559. MR4078236 ·Zbl 1101.35013 ·doi:10.1016/j.crma.2003.12.031 |
[12] | H. BRÉZIS and E. LIEB, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 88 (1983), no. 3, 486-490. http://dx.doi.org/10.2307/ 2044999. MR699419 ·Zbl 1325.46037 ·doi:10.1512/iumj.2014.63.5395 |
[13] | A. CHAMBOLLE and V. CRISMALE, Phase-field approximation for a class of cohesive fracture energies with an activation threshold, Advances in the Calculus of Variations (Decembre 2018), submitted, available at http://arxiv.org/abs/arXiv:1812.05301. ·Zbl 1450.46017 ·doi:10.2140/apde.2020.13.559 |
[14] | S. CONTI, D. FARACO, and F. MAGGI, A new approach to counterexamples to L 1 esti-mates: Korn’s inequality, geometric rigidity, and regularity for gradients of separately convex func-tions, Arch. Ration. Mech. Anal. 175 (2005), no. 2, 287-300. http://dx.doi.org/10.1007/ s00205-004-0350-5. MR2118479 ·Zbl 0526.46037 ·doi:10.2307/2044999 |
[15] | D. COX, J. LITTLE, and D. O’SHEA, Ideals, Varieties, and Algorithms: An Introduction to Com-putational Algebraic Geometry and Commutative Algebra, 2nd ed., Undergraduate Texts in Math-ematics, Springer-Verlag, New York, 1997. MR1417938 |
[16] | B. DACOROGNA, W. GANGBO, and O. KNEUSS, Symplectic factorization, Darboux theorem and ellipticity, Ann. Inst. H. Poincaré Anal. Non Linéaire 35 (2018), no. 2, 327-356. http:// dx.doi.org/10.1016/j.anihpc.2017.04.005. MR3765545 ·Zbl 1080.49026 ·doi:10.1007/s00205-004-0350-5 |
[17] | E. DAVOLI, I. FONSECA, and P. LIU, Adaptive image processing: First order PDE constraint regu-larizers and a bilevel training scheme (February 2019), preprint, available at http://arxiv.org/ abs/arXiv:1902.01122. |
[18] | J. DENY and J. L. LIONS, Les espaces du type de Beppo Levi, Ann. Inst. Fourier (Grenoble) 5 (195), 305-370 (1955) (French). http://dx.doi.org/10.5802/aif.55. MR74787 ·Zbl 0065.09903 ·doi:10.5802/aif.55.MR74787 |
[19] | L. EPHREMIDZE, V. KOKILASHVILI, and S. SAMKO, Fractional, maximal and singular op-erators in variable exponent Lorentz spaces, Fract. Calc. Appl. Anal. 11 (2008), no. 4, 407-420. MR2459733 ·Zbl 1167.42310 |
[20] | E. GAGLIARDO, Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in n variabili, Rend. Sem. Mat. Univ. Padova 27 (1957), 284-305 (Italian). MR102739 ·Zbl 0087.10902 |
[21] | F. GMEINEDER and B. RAIŢȂ, Embeddings for A-weakly differentiable functions on domains, J. Funct. Anal. 277 (2019), no. 12, 108278, 33. http://dx.doi.org/10.1016/j.jfa.2019. 108278. MR4019087 ·Zbl 1440.46031 ·doi:10.1016/j.jfa.2019.108278.MR4019087 |
[22] | , On critical L p -differentiability of BD-maps, Rev. Mat. Iberoam. 35 (2019), no. 7, 2071-2078. http://dx.doi.org/10.4171/rmi/1111. MR4029794 ·Zbl 1429.26017 ·doi:10.4171/rmi/1111.MR4029794 |
[23] | L. HÖRMANDER, Differentiability properties of solutions of systems of differential equations, Ark. Mat. 3 (1958), 527-535. http://dx.doi.org/10.1007/BF02589514. MR104923 ·Zbl 0131.09503 ·doi:10.1007/BF02589514.MR104923 |
[24] | , The Analysis of Linear Partial Differential Operators. I: Distribution Theory and Fourier Analysis, 2nd ed., Springer Study Edition, Springer-Verlag, Berlin, 1990. http://dx.doi.org/ 10.1007/978-3-642-61497-2. MR1065136 ·Zbl 1440.46031 ·doi:10.1016/j.jfa.2019.108278 |
[25] | J. E. HUTCHINSON, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), no. 5, 713-747. http://dx.doi.org/10.1512/iumj.1981.30.30055. MR625600 ·Zbl 1429.26017 ·doi:10.4171/rmi/1111 |
[26] | A. KAŁAMAJSKA, Pointwise multiplicative inequalities and Nirenberg type estimates in weighted Sobolev spaces, Studia Math. 108 (1994), no. 3, 275-290. http://dx.doi.org/10.4064/ sm-108-3-275-290. MR1259280 ·Zbl 0131.09503 ·doi:10.1007/BF02589514 |
[27] | K. KAZANIECKI, D. M. STOLYAROV, and M. WOJCIECHOWSKI, Anisotropic Ornstein non-inequalities, Anal. PDE 10 (2017), no. 2, 351-366. http://dx.doi.org/10.2140/apde.2017. 10.351. MR3619873 ·Zbl 1362.35013 ·doi:10.1007/978-3-642-61497-2 |
[28] | K. KAZANIECKI and M. WOJCIECHOWSKI, Ornstein’s non-inequalities: Riesz product approach (June 2014), preprint, available at http://arxiv.org/abs/arXiv:1406.7319. |
[29] | B. KIRCHHEIM and J. KRISTENSEN, On rank one convex functions that are homogeneous of degree one, Arch. Ration. Mech. Anal. 221 (2016), no. 1, 527-558. http://dx.doi.org/10. 1007/s00205-016-0967-1. MR3483901 ·Zbl 0819.46021 ·doi:10.4064/sm-108-3-275-290 |
[30] | M. V. KOROBKOV and J. KRISTENSEN, The trace theorem, the Luzin N-and Morse-Sard prop-erties for the sharp case of Sobolev-Lorentz mappings, J. Geom. Anal. 28 (2018), no. 3, 2834-2856. http://dx.doi.org/10.1007/s12220-017-9936-7. MR3833820 ·Zbl 1362.35013 ·doi:10.2140/apde.2017.10.351 |
[31] | L. LANZANI and E. M. STEIN, A note on div curl inequalities, Math. Res. Lett. 12 (2005), no. 1, 57-61. http://dx.doi.org/10.4310/MRL.2005.v12.n1.a6. MR2122730 ·Zbl 1113.26015 ·doi:10.4310/MRL.2005.v12.n1.a6.MR2122730 |
[32] | J. M. MARSTRAND, The (ϕ, s) regular subsets of n-space, Trans. Amer. Math. Soc. 113 (1964), 369-392. http://dx.doi.org/10.2307/1994138. MR166336 ·Zbl 1342.49015 ·doi:10.1007/s00205-016-0967-1 |
[33] | V. I. MAZ’YA, Sobolev Spaces with Applications to Elliptic Partial Differential Equations, Second, revised and augmented edition, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 342, Springer, Heidelberg, 2011. http://dx.doi. org/10.1007/978-3-642-15564-2. MR2777530 ·Zbl 1113.26015 ·doi:10.4310/MRL.2005.v12.n1.a6 |
[34] | N. G. MEYERS and W. P. ZIEMER, Integral inequalities of Poincaré and Wirtinger type for BV functions, Amer. J. Math. 99 (1977), no. 6, 1345-1360. http://dx.doi.org/10.2307/ 2374028. MR507433 ·Zbl 0144.04902 ·doi:10.2307/1994138 |
[35] | D. ORNSTEIN, A non-equality for differential operators in the L 1 norm, Arch. Rational Mech. Anal. 11 (1962), 40-49. http://dx.doi.org/10.1007/BF00253928. MR149331 ·Zbl 0106.29602 ·doi:10.1007/BF00253928.MR149331 |
[36] | B. RAIŢȂ, Critical L p -differentiability of BV A -maps and canceling operators, Trans. Amer. Math. Soc. 372 (2019), no. 10, 7297-7326. http://dx.doi.org/10.1090/tran/7878. MR4024554 ·Zbl 1217.46002 ·doi:10.1007/978-3-642-15564-2 |
[37] | , L 1 -estimates and A-weakly differentiable functions, Technical Report, OxPDE, 2018, Report 18.01. ·Zbl 0416.46025 ·doi:10.2307/2374028 |
[38] | B. RAIŢȂ and A. SKOROBOGATOVA, Continuity and canceling operators of order n on R n , Calc. Var. Partial Differential Equations 59 (2020), no. 2, Paper No. 85, 17, available at http://arxiv.org/abs/arXiv:1903.03574. http://dx.doi.org/10.1007/ s00526-020-01739-z. MR4087393 ·Zbl 0106.29602 ·doi:10.1007/BF00253928 |
[39] | Ju. G. REŠETNJAK, The weak convergence of completely additive vector-valued set functions, Sibirsk. Mat.Ž. 9 (1968), 1386-1394 (Russian). MR0240274 |
[40] | , Estimates for certain differential operators with finite-dimensional kernel, Sibirsk. Mat.Ž. 11 (1970), 414-428 (Russian). MR0264464 ·Zbl 0233.35010 |
[41] | F. RINDLER and G. SHAW, Strictly continuous extension of functionals with linear growth to the space BV, Q. J. Math. 66 (2015), no. 3, 953-978. http://dx.doi.org/10.1093/qmath/ hav022. MR3396100 ·Zbl 1326.49022 ·doi:10.1093/qmath/hav022.MR3396100 |
[42] | M. ROGINSKAYA and M. WOJCIECHOWSKI, Singularity of vector valued measures in terms of Fourier transform, J. Fourier Anal. Appl. 12 (2006), no. 2, 213-223. http://dx.doi.org/10. 1007/s00041-005-5030-9. MR2224396 ·Zbl 1096.42003 ·doi:10.1007/s00041-005-5030-9.MR2224396 |
[43] | D. C. SPENCER, Overdetermined systems of linear partial differential equations, Bull. Amer. Math. Soc. 75 (1969), 179-239. ·Zbl 0185.33801 |
[44] | http://dx.doi.org/10.1090/S0002-9904-1969-12129-4. MR242200 ·Zbl 1326.49022 ·doi:10.1093/qmath/hav022 |
[45] | K. T. SMITH, Formulas to represent functions by their derivatives, Math. Ann. 188 (1970), 53-77. http://dx.doi.org/10.1007/BF01435415. MR282046 ·Zbl 0324.35009 ·doi:10.1007/BF01435415.MR282046 |
[46] | R. TEMAM and G. STRANG, Functions of Bounded Deformation, Arch. Rational Mech. Anal. 75 (1980/81), no. 1, 7-21. http://dx.doi.org/10.1007/BF00284617. MR592100 ·Zbl 1096.42003 ·doi:10.1007/s00041-005-5030-9 |
[47] | H. TRIEBEL, Theory of Function Spaces, Monographs in Mathematics, vol. 78, Birkhäuser Verlag, Basel, 1983. http://dx.doi.org/10.1007/978-3-0346-0416-1. MR781540 ·Zbl 0185.33801 ·doi:10.1090/S0002-9904-1969-12129-4 |
[48] | J. VAN SCHAFTINGEN, Limiting fractional and Lorentz space estimates of differential forms, Proc. Amer. Math. Soc. 138 (2010), no. 1, 235-240. http://dx.doi.org/10.1090/ S0002-9939-09-10005-9. MR2550188 ·Zbl 0324.35009 ·doi:10.1007/BF01435415 |
[49] | , Limiting Sobolev inequalities for vector fields and canceling linear differential operators, J. Eur. Math. Soc. (JEMS) 15 (2013), no. 3, 877-921. http://dx.doi.org/10.4171/JEMS/ 380. MR3085095 ·Zbl 0472.73031 ·doi:10.1007/BF00284617 |
[50] | W. P. ZIEMER, Weakly Differentiable Functions: Sobolev Spaces and Functions of Bounded Varia-tion, Graduate Texts in Mathematics, vol. 120, Springer-Verlag, New York, 1989. http://dx. doi.org/10.1007/978-1-4612-1015-3. MR1014685 ·Zbl 1184.35012 ·doi:10.1090/S0002-9939-09-10005-9 |
[51] | FRANZ GMEINEDER: Universität Bonn Mathematisches Institut Endenicher Allee 60 |
[52] | Bonn, Germany BOGDAN RAIŢȂ: Max-Planck-Institut für Mathematik in den Naturwissenschaften Inselstraße 22 |
[53] | Leipzig, Germany JEAN VAN SCHAFTINGEN: Université catholique de Louvain, Institut de Recherche en Mathématique et Physique Chemin du Cyclotron 2 bte L7.01.01 |
[54] | Louvain-la-Neuve Belgium KEY WORDS AND PHRASES: Trace embeddings, overdetermined elliptic operators, elliptic and can-celling operators, C-elliptic operators, Triebel-Lizorkin spaces, functions of bounded variation, func-tions of bounded deformation, BV A -spaces, strict convergence, Sobolev spaces. Received: July 3, 2019. |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.