Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Orbital stability of the sum of smooth solitons in the Degasperis-Procesi equation.(English. French summary)Zbl 1491.35341

Summary: The Degasperis-Procesi (DP) equation is an integrable Camassa-Holm-type model as an asymptotic approximation for the unidirectional propagation of shallow water waves. This work is to establish the \(L^2 \cap L^\infty\) orbital stability of a wave train containing \(N\) smooth solitons which are well separated. The main difficulties stem from the subtle nonlocal structure of the DP equation. One consequence is that the energy space of the DE equation based on the conserved quantity induced by the translation symmetry is only equivalent to the \(L^2\)-norm, which by itself can not bound the higher-order nonlinear terms in the Lagrangian. Our remedy is to introducea priori estimates based on certain smooth initial conditions. Moreover, another consequence is that the nonlocal structure of the DP equation significantly complicates the verification of the monotonicity of local momentum and the positive definiteness of a refined quadratic form of the orthogonalized perturbation.

MSC:

35Q35 PDEs in connection with fluid mechanics
35Q51 Soliton equations
37K40 Soliton theory, asymptotic behavior of solutions of infinite-dimensional Hamiltonian systems
37K45 Stability problems for infinite-dimensional Hamiltonian and Lagrangian systems
76B25 Solitary waves for incompressible inviscid fluids
35B35 Stability in context of PDEs
35B45 A priori estimates in context of PDEs
35B20 Perturbations in context of PDEs
35B40 Asymptotic behavior of solutions to PDEs
35B65 Smoothness and regularity of solutions to PDEs
35C08 Soliton solutions

Cite

References:

[1]Béthuel, F.; Gravejat, P.; Smets, D., Stability in the energy space for chains of solitons of the one-dimensional Gross-Pitaevskii equation, Univ. Grenoble Ann. Inst. Fourier, 64, 19-70 (2014) ·Zbl 1337.35131
[2]Bona, J.; Sougganidis, P.; Strauss, W., Stability and instability of solitary waves of Korteweg-de Vries type, Proc. R. Soc. Lond., 411, 395-412 (1987) ·Zbl 0648.76005
[3]Boussinesq, J., Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond, J. Math. Pures Appl., 17, 55-108 (1872) ·JFM 04.0493.04
[4]Camassa, R.; Holm, D. D., An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71, 1661-1664 (1993) ·Zbl 0972.35521
[5]de Laire, A.; Gravejat, P., Stability in the energy space for chains of solitons of the Landau-Lifshitz equation, J. Differ. Equ., 258, 1-80 (2021) ·Zbl 1301.35173
[6]Dix, D.; McKinney, W., Numerical computations of self-similar blow up solutions of the generalized Korteweg-de Vries equation, Differ. Integral Equ., 11, 679-723 (1998) ·Zbl 1007.65061
[7]Escher, J.; Liu, Y.; Yin, Z., Global weak solutions and blow-up structure for the Degasperis-Procesi equation, J. Funct. Anal., 241, 457-485 (2006) ·Zbl 1126.35053
[8]Fokas, A.; Fuchssteiner, B., Symplectic structures, their Bäcklund transformation and hereditary symmetries, Physica D, 4, 47-66 (1981) ·Zbl 1194.37114
[9]Gardner, C.; Greene, J.; Kruskal, M.; Miura, R., Method for solving the Korteweg-de Vries equation, Phys. Rev. Lett., 19, 1095-1097 (1967) ·Zbl 1061.35520
[10]Grillakis, M.; Shatah, J.; Strauss, W., Stability theory of solitary waves in the presence of symmetry. I, J. Funct. Anal., 74, 160-197 (1987) ·Zbl 0656.35122
[11]Hirota, R., Exact N-soliton solutions of the wave equation of long waves in shallow-water and in nonlinear lattices, J. Math. Phys., 14, 810-814 (1973) ·Zbl 0261.76008
[12]Hirota, R.; Satsuma, J., N-soliton solutions of model equations for shallow water waves, J. Phys. Soc. Jpn., 40, 2, 611-612 (1976) ·Zbl 1334.76016
[13]Kato, T., Quasi-linear equations of evolution, with applications to partial differential equations, (Spectral Theory and Differential Equations. Spectral Theory and Differential Equations, Lecture Notes in Math., vol. 448 (1975), Springer Verlag: Springer Verlag Berlin), 25-70 ·Zbl 0315.35077
[14]Korteweg, D. J.; de Vries, G., On the change of form of long waves advancing in a rectangular channel, and on a new type of long stationary waves, Philos. Mag., 39, 5, 422-442 (1895) ·JFM 26.0881.02
[15]Khorbatly, B.; Molinet, L., On the orbital stability of the Degasperis-Procesi antipeakon-peakon profile, J. Differ. Equ., 269, 6, 4799-4852 (2020) ·Zbl 1442.35341
[16]Le Coz, S.; Wu, Y., Stability of multisolitons for the derivative nonlinear Schrödinger equation, Int. Math. Res. Not. IMRN, 13, 4120-4170 (2018) ·Zbl 1410.35207
[17]Li, J.; Liu, Y.; Wu, Q., Spectral stability of smooth solitary waves for the Degasperis-Procesi equation, J. Math. Pures Appl., 142, 298-314 (2020) ·Zbl 1448.35377
[18]Liu, Y.; Yin, Z., Global existence and blow-up phenomena for the Degasperis-Procesi equation, Commun. Math. Phys., 267, 801-820 (2006) ·Zbl 1131.35074
[19]Maddocks, J.; Sachs, R., On the stability of KdV multi-solitons, Commun. Pure Appl. Math., 46, 867-901 (1993) ·Zbl 0795.35107
[20]Martel, Y.; Merle, F.; Tsai, T. P., Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations, Commun. Math. Phys., 231, 347-373 (2002) ·Zbl 1017.35098
[21]Martel, Y.; Merle, F.; Tsai, T. P., Stability in H1 of the sum of K solitary waves for some nonlinear Schrödinger equations, Duke Math. J., 133, 3, 405-466 (2006) ·Zbl 1099.35134
[22]Matsuno, Y., Multisoliton solutions of the Degasperis-Procesi equation and their peakon limit, Inverse Probl., 21, 5, 1553-1570 (2005) ·Zbl 1086.35095
[23]Matsuno, Y., The N-soliton solution of the Degasperis-Procesi equation, Inverse Probl., 21, 6, 2085-2101 (2005) ·Zbl 1112.37072
[24]Miura, R., The Korteweg-de Vries equation: a survey of results, SIAM Rev., 18, 3, 412-459 (1976) ·Zbl 0333.35021
[25]Nimmo, J.; Freeman, N., A method of obtaining the N-soliton solution of the Boussinesq equation in terms of a Wronskian, Phys. Lett. A, 95, 1, 4-6 (1983)
[26]Newell, A., Solitons in Mathematics and Physics, 1-260 (1985), Society for Industrial and Applied Mathematics ·Zbl 0565.35003
[27]Perelman, G., Asymptotic stability of multi-soliton solutions for nonlinear Schrödinger equations, Commun. Partial Differ. Equ., 29, 1051-1095 (2004) ·Zbl 1067.35113
[28]Rayleigh, L., On waves, Lond. Edinb. Dubl. Phil. Mag. J. Sci., 1, 257-279 (1876) ·JFM 08.0613.03
[29]Rodnianski, I.; Schlag, W.; Soffer, A., Asymptotic stability of N-soliton states of NLS (5 Sep 2003)
[30]Russell, S., Report on waves, (Rept. Fourteenth Meeting of the British Association for the Advancement of Science (1844), John Murray: John Murray London), 311-390+57 plates
[31]Yin, Z., On the Cauchy problem for an integrable equation with peakon solutions, Ill. J. Math., 47, 649-666 (2003) ·Zbl 1061.35142
[32]Zabusky, N.; Kruskal, M., Interaction of “solitons” in a collisionless plasma and the recurrence of initial states, Phys. Rev. Lett., 15, 240-243 (1965) ·Zbl 1201.35174
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp