[1] | Béthuel, F.; Gravejat, P.; Smets, D., Stability in the energy space for chains of solitons of the one-dimensional Gross-Pitaevskii equation, Univ. Grenoble Ann. Inst. Fourier, 64, 19-70 (2014) ·Zbl 1337.35131 |
[2] | Bona, J.; Sougganidis, P.; Strauss, W., Stability and instability of solitary waves of Korteweg-de Vries type, Proc. R. Soc. Lond., 411, 395-412 (1987) ·Zbl 0648.76005 |
[3] | Boussinesq, J., Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond, J. Math. Pures Appl., 17, 55-108 (1872) ·JFM 04.0493.04 |
[4] | Camassa, R.; Holm, D. D., An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71, 1661-1664 (1993) ·Zbl 0972.35521 |
[5] | de Laire, A.; Gravejat, P., Stability in the energy space for chains of solitons of the Landau-Lifshitz equation, J. Differ. Equ., 258, 1-80 (2021) ·Zbl 1301.35173 |
[6] | Dix, D.; McKinney, W., Numerical computations of self-similar blow up solutions of the generalized Korteweg-de Vries equation, Differ. Integral Equ., 11, 679-723 (1998) ·Zbl 1007.65061 |
[7] | Escher, J.; Liu, Y.; Yin, Z., Global weak solutions and blow-up structure for the Degasperis-Procesi equation, J. Funct. Anal., 241, 457-485 (2006) ·Zbl 1126.35053 |
[8] | Fokas, A.; Fuchssteiner, B., Symplectic structures, their Bäcklund transformation and hereditary symmetries, Physica D, 4, 47-66 (1981) ·Zbl 1194.37114 |
[9] | Gardner, C.; Greene, J.; Kruskal, M.; Miura, R., Method for solving the Korteweg-de Vries equation, Phys. Rev. Lett., 19, 1095-1097 (1967) ·Zbl 1061.35520 |
[10] | Grillakis, M.; Shatah, J.; Strauss, W., Stability theory of solitary waves in the presence of symmetry. I, J. Funct. Anal., 74, 160-197 (1987) ·Zbl 0656.35122 |
[11] | Hirota, R., Exact N-soliton solutions of the wave equation of long waves in shallow-water and in nonlinear lattices, J. Math. Phys., 14, 810-814 (1973) ·Zbl 0261.76008 |
[12] | Hirota, R.; Satsuma, J., N-soliton solutions of model equations for shallow water waves, J. Phys. Soc. Jpn., 40, 2, 611-612 (1976) ·Zbl 1334.76016 |
[13] | Kato, T., Quasi-linear equations of evolution, with applications to partial differential equations, (Spectral Theory and Differential Equations. Spectral Theory and Differential Equations, Lecture Notes in Math., vol. 448 (1975), Springer Verlag: Springer Verlag Berlin), 25-70 ·Zbl 0315.35077 |
[14] | Korteweg, D. J.; de Vries, G., On the change of form of long waves advancing in a rectangular channel, and on a new type of long stationary waves, Philos. Mag., 39, 5, 422-442 (1895) ·JFM 26.0881.02 |
[15] | Khorbatly, B.; Molinet, L., On the orbital stability of the Degasperis-Procesi antipeakon-peakon profile, J. Differ. Equ., 269, 6, 4799-4852 (2020) ·Zbl 1442.35341 |
[16] | Le Coz, S.; Wu, Y., Stability of multisolitons for the derivative nonlinear Schrödinger equation, Int. Math. Res. Not. IMRN, 13, 4120-4170 (2018) ·Zbl 1410.35207 |
[17] | Li, J.; Liu, Y.; Wu, Q., Spectral stability of smooth solitary waves for the Degasperis-Procesi equation, J. Math. Pures Appl., 142, 298-314 (2020) ·Zbl 1448.35377 |
[18] | Liu, Y.; Yin, Z., Global existence and blow-up phenomena for the Degasperis-Procesi equation, Commun. Math. Phys., 267, 801-820 (2006) ·Zbl 1131.35074 |
[19] | Maddocks, J.; Sachs, R., On the stability of KdV multi-solitons, Commun. Pure Appl. Math., 46, 867-901 (1993) ·Zbl 0795.35107 |
[20] | Martel, Y.; Merle, F.; Tsai, T. P., Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations, Commun. Math. Phys., 231, 347-373 (2002) ·Zbl 1017.35098 |
[21] | Martel, Y.; Merle, F.; Tsai, T. P., Stability in H1 of the sum of K solitary waves for some nonlinear Schrödinger equations, Duke Math. J., 133, 3, 405-466 (2006) ·Zbl 1099.35134 |
[22] | Matsuno, Y., Multisoliton solutions of the Degasperis-Procesi equation and their peakon limit, Inverse Probl., 21, 5, 1553-1570 (2005) ·Zbl 1086.35095 |
[23] | Matsuno, Y., The N-soliton solution of the Degasperis-Procesi equation, Inverse Probl., 21, 6, 2085-2101 (2005) ·Zbl 1112.37072 |
[24] | Miura, R., The Korteweg-de Vries equation: a survey of results, SIAM Rev., 18, 3, 412-459 (1976) ·Zbl 0333.35021 |
[25] | Nimmo, J.; Freeman, N., A method of obtaining the N-soliton solution of the Boussinesq equation in terms of a Wronskian, Phys. Lett. A, 95, 1, 4-6 (1983) |
[26] | Newell, A., Solitons in Mathematics and Physics, 1-260 (1985), Society for Industrial and Applied Mathematics ·Zbl 0565.35003 |
[27] | Perelman, G., Asymptotic stability of multi-soliton solutions for nonlinear Schrödinger equations, Commun. Partial Differ. Equ., 29, 1051-1095 (2004) ·Zbl 1067.35113 |
[28] | Rayleigh, L., On waves, Lond. Edinb. Dubl. Phil. Mag. J. Sci., 1, 257-279 (1876) ·JFM 08.0613.03 |
[29] | Rodnianski, I.; Schlag, W.; Soffer, A., Asymptotic stability of N-soliton states of NLS (5 Sep 2003) |
[30] | Russell, S., Report on waves, (Rept. Fourteenth Meeting of the British Association for the Advancement of Science (1844), John Murray: John Murray London), 311-390+57 plates |
[31] | Yin, Z., On the Cauchy problem for an integrable equation with peakon solutions, Ill. J. Math., 47, 649-666 (2003) ·Zbl 1061.35142 |
[32] | Zabusky, N.; Kruskal, M., Interaction of “solitons” in a collisionless plasma and the recurrence of initial states, Phys. Rev. Lett., 15, 240-243 (1965) ·Zbl 1201.35174 |