Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Simplicity of algebras associated to non-Hausdorff groupoids.(English)Zbl 1491.16032

Summary: We prove a uniqueness theorem and give a characterization of simplicity for Steinberg algebras associated to non-Hausdorff ample groupoids. We also prove a uniqueness theorem and give a characterization of simplicity for the \(C^*\)-algebra associated to non-Hausdorff étale groupoids. Then we show how our results apply in the setting of tight representations of inverse semigroups, groups acting on graphs, and self-similar actions. In particular, we show that the \(C^{*}\)-algebra and the complex Steinberg algebra of the self-similar action of the Grigorchuk group are simple but the Steinberg algebra with coefficients in \(\mathbb{Z}_2\) is not simple.

MSC:

16S99 Associative rings and algebras arising under various constructions
16S10 Associative rings determined by universal properties (free algebras, coproducts, adjunction of inverses, etc.)
22A22 Topological groupoids (including differentiable and Lie groupoids)
46L05 General theory of \(C^*\)-algebras
46L55 Noncommutative dynamical systems

Cite

References:

[1]Anderson, Joel, Extensions, restrictions, and representations of states on \(C^{\ast} \)-algebras, Trans. Amer. Math. Soc., 249, 2, 303-329 (1979) ·Zbl 0408.46049 ·doi:10.2307/1998793
[2]Brown, Jonathan; Clark, Lisa Orloff; Farthing, Cynthia; Sims, Aidan, Simplicity of algebras associated to \'{e}tale groupoids, Semigroup Forum, 88, 2, 433-452 (2014) ·Zbl 1304.46046 ·doi:10.1007/s00233-013-9546-z
[3]Brown, Jonathan H.; Nagy, Gabriel; Reznikoff, Sarah; Sims, Aidan; Williams, Dana P., Cartan subalgebras in \(C^*\)-algebras of Hausdorff \'{e}tale groupoids, Integral Equations Operator Theory, 85, 1, 109-126 (2016) ·Zbl 1360.46046 ·doi:10.1007/s00020-016-2285-2
[4]Orloff Clark, Lisa; Exel, Ruy; Pardo, Enrique, A generalized uniqueness theorem and the graded ideal structure of Steinberg algebras, Forum Math., 30, 3, 533-552 (2018) ·Zbl 1410.16032 ·doi:10.1515/forum-2016-0197
[5]Clark, Lisa Orloff; Farthing, Cynthia; Sims, Aidan; Tomforde, Mark, A groupoid generalisation of Leavitt path algebras, Semigroup Forum, 89, 3, 501-517 (2014) ·Zbl 1323.46033 ·doi:10.1007/s00233-014-9594-z
[6]Clark, Lisa Orloff; Sims, Aidan, Equivalent groupoids have Morita equivalent Steinberg algebras, J. Pure Appl. Algebra, 219, 6, 2062-2075 (2015) ·Zbl 1317.16001 ·doi:10.1016/j.jpaa.2014.07.023
[7]Connes, A., A survey of foliations and operator algebras. Operator algebras and applications, Part I, Kingston, Ont., 1980, Proc. Sympos. Pure Math. 38, 521-628 (1982), Amer. Math. Soc., Providence, R.I. ·Zbl 0531.57023
[8]Connes, Alain, Noncommutative geometry, xiv+661 pp. (1994), Academic Press, Inc., San Diego, CA ·Zbl 0818.46076
[9]Exel, R., Non-Hausdorff \'{e}tale groupoids, Proc. Amer. Math. Soc., 139, 3, 897-907 (2011) ·Zbl 1213.46064 ·doi:10.1090/S0002-9939-2010-10477-X
[10]Exel, R., Reconstructing a totally disconnected groupoid from its ample semigroup, Proc. Amer. Math. Soc., 138, 8, 2991-3001 (2010) ·Zbl 1195.22002 ·doi:10.1090/S0002-9939-10-10346-3
[11]Exel, Ruy, Inverse semigroups and combinatorial \(C^\ast \)-algebras, Bull. Braz. Math. Soc. (N.S.), 39, 2, 191-313 (2008) ·Zbl 1173.46035 ·doi:10.1007/s00574-008-0080-7
[12]Exel, Ruy; Pardo, Enrique, The tight groupoid of an inverse semigroup, Semigroup Forum, 92, 1, 274-303 (2016) ·Zbl 1353.20040 ·doi:10.1007/s00233-015-9758-5
[13]Exel, Ruy; Pardo, Enrique, Self-similar graphs, a unified treatment of Katsura and Nekrashevych \(\text{C^*} \)-algebras, Adv. Math., 306, 1046-1129 (2017) ·Zbl 1390.46050 ·doi:10.1016/j.aim.2016.10.030
[14]Tu, Jean-Louis, Non-Hausdorff groupoids, proper actions and \(K\)-theory, Doc. Math., 9, 565-597 (2004) ·Zbl 1058.22005
[15]Givant, Steven; Halmos, Paul, Introduction to Boolean algebras, Undergraduate Texts in Mathematics, xiv+574 pp. (2009), Springer, New York ·Zbl 1168.06001 ·doi:10.1007/978-0-387-68436-9
[16]Grigor\v{c}uk, R. I., On Burnside’s problem on periodic groups, Funktsional. Anal. i Prilozhen., 14, 1, 53-54 (1980) ·Zbl 0595.20029
[17]Gr84 R. I. Grigorchuk, Degrees of growth of finitely generated groups, and the theory of invariant means, Mathematics of the USSR-Izvestiya, 25(2) (1985) 259. ·Zbl 0583.20023
[18]Katsura, Takeshi, A construction of actions on Kirchberg algebras which induce given actions on their \(K\)-groups, J. Reine Angew. Math., 617, 27-65 (2008) ·Zbl 1158.46042 ·doi:10.1515/CRELLE.2008.025
[19]Khoshkam, Mahmood; Skandalis, Georges, Regular representation of groupoid \(C^*\)-algebras and applications to inverse semigroups, J. Reine Angew. Math., 546, 47-72 (2002) ·Zbl 1029.46082 ·doi:10.1515/crll.2002.045
[20]Laca, Marcelo; Raeburn, Iain; Ramagge, Jacqui; Whittaker, Michael F., Equilibrium states on the Cuntz-Pimsner algebras of self-similar actions, J. Funct. Anal., 266, 11, 6619-6661 (2014) ·Zbl 1305.46059 ·doi:10.1016/j.jfa.2014.03.003
[21]Nekrashevych, Volodymyr, \(C^*\)-algebras and self-similar groups, J. Reine Angew. Math., 630, 59-123 (2009) ·Zbl 1175.46048 ·doi:10.1515/CRELLE.2009.035
[22]Nekrashevych, Volodymyr, Growth of \'{e}tale groupoids and simple algebras, Internat. J. Algebra Comput., 26, 2, 375-397 (2016) ·Zbl 1366.16016 ·doi:10.1142/S0218196716500156
[23]Phillips, N. Christopher, Crossed products of the Cantor set by free minimal actions of \(\mathbb{Z}^d\), Comm. Math. Phys., 256, 1, 1-42 (2005) ·Zbl 1084.46056 ·doi:10.1007/s00220-004-1171-y
[24]Raeburn, Iain, Graph algebras, CBMS Regional Conference Series in Mathematics 103, vi+113 pp. (2005), Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI ·Zbl 1079.46002 ·doi:10.1090/cbms/103
[25]Renault, Jean, A groupoid approach to \(C^{\ast} \)-algebras, Lecture Notes in Mathematics 793, ii+160 pp. (1980), Springer, Berlin ·Zbl 0433.46049
[26]Renault, Jean, Cartan subalgebras in \(C^*\)-algebras, Irish Math. Soc. Bull., 61, 29-63 (2008) ·Zbl 1175.46050
[27]Starling, Charles, Boundary quotients of \(\text{C^*} \)-algebras of right LCM semigroups, J. Funct. Anal., 268, 11, 3326-3356 (2015) ·Zbl 1343.46055 ·doi:10.1016/j.jfa.2015.01.001
[28]Steinberg, Benjamin, Simplicity, primitivity and semiprimitivity of \'{e}tale groupoid algebras with applications to inverse semigroup algebras, J. Pure Appl. Algebra, 220, 3, 1035-1054 (2016) ·Zbl 1383.20038 ·doi:10.1016/j.jpaa.2015.08.006
[29]Steinberg, Benjamin, A groupoid approach to discrete inverse semigroup algebras, Adv. Math., 223, 2, 689-727 (2010) ·Zbl 1188.22003 ·doi:10.1016/j.aim.2009.09.001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp