[1] | Anderson, Joel, Extensions, restrictions, and representations of states on \(C^{\ast} \)-algebras, Trans. Amer. Math. Soc., 249, 2, 303-329 (1979) ·Zbl 0408.46049 ·doi:10.2307/1998793 |
[2] | Brown, Jonathan; Clark, Lisa Orloff; Farthing, Cynthia; Sims, Aidan, Simplicity of algebras associated to \'{e}tale groupoids, Semigroup Forum, 88, 2, 433-452 (2014) ·Zbl 1304.46046 ·doi:10.1007/s00233-013-9546-z |
[3] | Brown, Jonathan H.; Nagy, Gabriel; Reznikoff, Sarah; Sims, Aidan; Williams, Dana P., Cartan subalgebras in \(C^*\)-algebras of Hausdorff \'{e}tale groupoids, Integral Equations Operator Theory, 85, 1, 109-126 (2016) ·Zbl 1360.46046 ·doi:10.1007/s00020-016-2285-2 |
[4] | Orloff Clark, Lisa; Exel, Ruy; Pardo, Enrique, A generalized uniqueness theorem and the graded ideal structure of Steinberg algebras, Forum Math., 30, 3, 533-552 (2018) ·Zbl 1410.16032 ·doi:10.1515/forum-2016-0197 |
[5] | Clark, Lisa Orloff; Farthing, Cynthia; Sims, Aidan; Tomforde, Mark, A groupoid generalisation of Leavitt path algebras, Semigroup Forum, 89, 3, 501-517 (2014) ·Zbl 1323.46033 ·doi:10.1007/s00233-014-9594-z |
[6] | Clark, Lisa Orloff; Sims, Aidan, Equivalent groupoids have Morita equivalent Steinberg algebras, J. Pure Appl. Algebra, 219, 6, 2062-2075 (2015) ·Zbl 1317.16001 ·doi:10.1016/j.jpaa.2014.07.023 |
[7] | Connes, A., A survey of foliations and operator algebras. Operator algebras and applications, Part I, Kingston, Ont., 1980, Proc. Sympos. Pure Math. 38, 521-628 (1982), Amer. Math. Soc., Providence, R.I. ·Zbl 0531.57023 |
[8] | Connes, Alain, Noncommutative geometry, xiv+661 pp. (1994), Academic Press, Inc., San Diego, CA ·Zbl 0818.46076 |
[9] | Exel, R., Non-Hausdorff \'{e}tale groupoids, Proc. Amer. Math. Soc., 139, 3, 897-907 (2011) ·Zbl 1213.46064 ·doi:10.1090/S0002-9939-2010-10477-X |
[10] | Exel, R., Reconstructing a totally disconnected groupoid from its ample semigroup, Proc. Amer. Math. Soc., 138, 8, 2991-3001 (2010) ·Zbl 1195.22002 ·doi:10.1090/S0002-9939-10-10346-3 |
[11] | Exel, Ruy, Inverse semigroups and combinatorial \(C^\ast \)-algebras, Bull. Braz. Math. Soc. (N.S.), 39, 2, 191-313 (2008) ·Zbl 1173.46035 ·doi:10.1007/s00574-008-0080-7 |
[12] | Exel, Ruy; Pardo, Enrique, The tight groupoid of an inverse semigroup, Semigroup Forum, 92, 1, 274-303 (2016) ·Zbl 1353.20040 ·doi:10.1007/s00233-015-9758-5 |
[13] | Exel, Ruy; Pardo, Enrique, Self-similar graphs, a unified treatment of Katsura and Nekrashevych \(\text{C^*} \)-algebras, Adv. Math., 306, 1046-1129 (2017) ·Zbl 1390.46050 ·doi:10.1016/j.aim.2016.10.030 |
[14] | Tu, Jean-Louis, Non-Hausdorff groupoids, proper actions and \(K\)-theory, Doc. Math., 9, 565-597 (2004) ·Zbl 1058.22005 |
[15] | Givant, Steven; Halmos, Paul, Introduction to Boolean algebras, Undergraduate Texts in Mathematics, xiv+574 pp. (2009), Springer, New York ·Zbl 1168.06001 ·doi:10.1007/978-0-387-68436-9 |
[16] | Grigor\v{c}uk, R. I., On Burnside’s problem on periodic groups, Funktsional. Anal. i Prilozhen., 14, 1, 53-54 (1980) ·Zbl 0595.20029 |
[17] | Gr84 R. I. Grigorchuk, Degrees of growth of finitely generated groups, and the theory of invariant means, Mathematics of the USSR-Izvestiya, 25(2) (1985) 259. ·Zbl 0583.20023 |
[18] | Katsura, Takeshi, A construction of actions on Kirchberg algebras which induce given actions on their \(K\)-groups, J. Reine Angew. Math., 617, 27-65 (2008) ·Zbl 1158.46042 ·doi:10.1515/CRELLE.2008.025 |
[19] | Khoshkam, Mahmood; Skandalis, Georges, Regular representation of groupoid \(C^*\)-algebras and applications to inverse semigroups, J. Reine Angew. Math., 546, 47-72 (2002) ·Zbl 1029.46082 ·doi:10.1515/crll.2002.045 |
[20] | Laca, Marcelo; Raeburn, Iain; Ramagge, Jacqui; Whittaker, Michael F., Equilibrium states on the Cuntz-Pimsner algebras of self-similar actions, J. Funct. Anal., 266, 11, 6619-6661 (2014) ·Zbl 1305.46059 ·doi:10.1016/j.jfa.2014.03.003 |
[21] | Nekrashevych, Volodymyr, \(C^*\)-algebras and self-similar groups, J. Reine Angew. Math., 630, 59-123 (2009) ·Zbl 1175.46048 ·doi:10.1515/CRELLE.2009.035 |
[22] | Nekrashevych, Volodymyr, Growth of \'{e}tale groupoids and simple algebras, Internat. J. Algebra Comput., 26, 2, 375-397 (2016) ·Zbl 1366.16016 ·doi:10.1142/S0218196716500156 |
[23] | Phillips, N. Christopher, Crossed products of the Cantor set by free minimal actions of \(\mathbb{Z}^d\), Comm. Math. Phys., 256, 1, 1-42 (2005) ·Zbl 1084.46056 ·doi:10.1007/s00220-004-1171-y |
[24] | Raeburn, Iain, Graph algebras, CBMS Regional Conference Series in Mathematics 103, vi+113 pp. (2005), Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI ·Zbl 1079.46002 ·doi:10.1090/cbms/103 |
[25] | Renault, Jean, A groupoid approach to \(C^{\ast} \)-algebras, Lecture Notes in Mathematics 793, ii+160 pp. (1980), Springer, Berlin ·Zbl 0433.46049 |
[26] | Renault, Jean, Cartan subalgebras in \(C^*\)-algebras, Irish Math. Soc. Bull., 61, 29-63 (2008) ·Zbl 1175.46050 |
[27] | Starling, Charles, Boundary quotients of \(\text{C^*} \)-algebras of right LCM semigroups, J. Funct. Anal., 268, 11, 3326-3356 (2015) ·Zbl 1343.46055 ·doi:10.1016/j.jfa.2015.01.001 |
[28] | Steinberg, Benjamin, Simplicity, primitivity and semiprimitivity of \'{e}tale groupoid algebras with applications to inverse semigroup algebras, J. Pure Appl. Algebra, 220, 3, 1035-1054 (2016) ·Zbl 1383.20038 ·doi:10.1016/j.jpaa.2015.08.006 |
[29] | Steinberg, Benjamin, A groupoid approach to discrete inverse semigroup algebras, Adv. Math., 223, 2, 689-727 (2010) ·Zbl 1188.22003 ·doi:10.1016/j.aim.2009.09.001 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.