[1] | Apostolov, V.; Calderbank, D. M.J.; Gauduchon, P.; Tønnesen-Friedman, C. W., Hamiltonian 2-forms in Kähler geometry, III Extremal metrics and stability, Invent. Math., 173, 3, 547-601 (2008) ·Zbl 1145.53055 |
[2] | Apostol, T. M., Mathematical Analysis (1974), Addison-Wesley Publishing Co.: Addison-Wesley Publishing Co. Reading, Mass.-London-Don Mills, Ont., xvii+492 pp. ·Zbl 0309.26002 |
[3] | Berman, R. J.; Boucksom, S., Growth of balls of holomorphic sections and energy at equilibrium, Invent. Math., 181, 2, 337-394 (2010) ·Zbl 1208.32020 |
[4] | Berman, R.; Boucksom, S.; Jonsson, M., A variational approach to the Yau-Tian-Donaldson conjecture, J. Am. Math. Soc. (2021) ·Zbl 1487.32141 |
[5] | Berman, R. J.; Darvas, T.; Lu, C., Convexity of the extended K-energy and the large time behavior of the weak Calabi flow, Geom. Topol., 21, 5, 2945-2988 (2017) ·Zbl 1372.53073 |
[6] | Boucksom, S.; Eriksson, D., Spaces of norms, determinant of cohomology and Fekete points in non-Archimedean geometry, Adv. Math., 378, Article 107501 pp. (2021) ·Zbl 1460.32044 |
[7] | Boucksom, S.; Eyssidieux, P.; Guedj, V.; Zeriahi, A., Monge-Ampère equations in big cohomology classes, Acta Math., 205, 2, 199-262 (2010) ·Zbl 1213.32025 |
[8] | Berndtsson, B., Curvature of vector bundles associated to holomorphic fibrations, Ann. Math., 531-560 (2009) ·Zbl 1195.32012 |
[9] | Berndtsson, B., Lelong numbers and vector bundles (2017) ·Zbl 1457.32023 |
[10] | Berndtsson, B., Probability measures associated to geodesics in the space of Kähler metrics, (Algebraic and Analytic Microlocal Analysis. Algebraic and Analytic Microlocal Analysis, Springer Proc. Math. Stat., vol. 269 (2018), Springer: Springer Cham), 395-419 ·Zbl 1420.32014 |
[11] | Berman, R. J.; Freixas i. Montplet, G., An arithmetic Hilbert-Samuel theorem for singular hermitian line bundles and cusp forms, Compos. Math., 150, 10, 1703-1728 (2014) ·Zbl 1316.14048 |
[12] | Boucksom, S.; Favre, C.; Jonsson, M., Valuations and plurisubharmonic singularities, Publ. Res. Inst. Math. Sci., 44, 2, 449-494 (2008) ·Zbl 1146.32017 |
[13] | Burgos Gil, J. I.; Gubler, W.; Jell, P.; Künnemann, K.; Martin, F.; Lazarsfeld, R., Differentiability of non-archimedean volumes and non-archimedean Monge-Ampère equations, Algebr. Geom., 7, 2, 113-152 (2020) ·Zbl 1457.32056 |
[14] | Boucksom, S.; Hisamoto, T.; Jonsson, M., Uniform K-stability, Duistermaat-Heckman measures and singularities of pairs, Ann. Inst. Fourier, 67, 2, 743-841 (2017) ·Zbl 1391.14090 |
[15] | Boucksom, S.; Hisamoto, T.; Jonsson, M., Uniform K-stability and asymptotics of energy functionals in Kähler geometry, J. Eur. Math. Soc., 21, 9, 2905-2944 (2019) ·Zbl 1478.53115 |
[16] | Boucksom, S.; Jonsson, M., A non-Archimedean approach to K-stability (2018) |
[17] | Boucksom, S.; Jonsson, M., Global pluripotential theory over a trivially valued field (2021) |
[18] | Błocki, Z.; Kołodziej, S., On regularization of plurisubharmonic functions on manifolds, Proc. Am. Math. Soc., 135, 7, 2089-2093 (2007) ·Zbl 1116.32024 |
[19] | Berman, R.; Keller, J., Bergman geodesics, (Complex Monge-Ampère Equations and Geodesics in the Space of Kähler Metrics. Complex Monge-Ampère Equations and Geodesics in the Space of Kähler Metrics, Lecture Notes in Math., vol. 2038 (2012), Springer: Springer Heidelberg), 283-302 ·Zbl 1231.32002 |
[20] | Bonavero, L., Inégalités de morse holomorphes singulières, J. Geom. Anal., 8, 3, 409-425 (1998) ·Zbl 0966.32011 |
[21] | Boucksom, S., On the volume of a line bundle, Int. J. Math., 13, 10, 1043-1063 (2002) ·Zbl 1101.14008 |
[22] | Boucksom, S., Singularities of plurisubharmonic functions and multiplier ideals (2017) |
[23] | Bedford, E.; Taylor, B. A., The Dirichlet problem for a complex Monge-Ampère equation, Invent. Math., 37, 1, 1-44 (1976) ·Zbl 0315.31007 |
[24] | Cao, J., Numerical dimension and a Kawamata-Viehweg-Nadel-type vanishing theorem on compact Kähler manifolds, Compos. Math., 150, 11, 1869-1902 (2014) ·Zbl 1323.32012 |
[25] | Catlin, D., The Bergman kernel and a theorem of Tian, (Analysis and Geometry in Several Complex Variables (1999), Springer), 1-23 ·Zbl 0941.32002 |
[26] | Chen, X.; Cheng, J., On the constant scalar curvature Kähler metrics, general automorphism group (2018) |
[27] | Chen, X.; Cheng, J., On the constant scalar curvature Kähler metrics (I)—a priori estimates, J. Am. Math. Soc. (2021) ·Zbl 1472.14042 |
[28] | Chen, X.; Cheng, J., On the constant scalar curvature Kähler metrics (II)—existence results, J. Am. Math. Soc. (2021) ·Zbl 1477.14067 |
[29] | Chen, X., The space of Kähler metrics, J. Differ. Geom., 56, 2, 189-234 (2000) ·Zbl 1041.58003 |
[30] | Chambert-Loir, A., Mesures et équidistribution sur les espaces de Berkovich, J. Reine Angew. Math. (Crelles J.), 2006, 595, 215-235 (2006) ·Zbl 1112.14022 |
[31] | Chambert-Loir, A.; Ducros, A., Formes différentielles réelles et courants sur les espaces de Berkovich (2012) |
[32] | Chen, X. X.; Tang, Y., Test configuration and geodesic rays, (Géométrie différentielle, physique mathématique, mathématiques et société. I. Géométrie différentielle, physique mathématique, mathématiques et société. I, Astérisque, vol. 321 (2008)), 139-167 ·Zbl 1181.53058 |
[33] | Chu, J.; Tosatti, V.; Weinkove, B., \( C^{1 , 1}\)-regularity for degenerate complex Monge-Ampère equations and geodesic rays, Commun. Partial Differ. Equ., 43, 2, 292-312 (2018) ·Zbl 1404.32075 |
[34] | Darvas, T., The Mabuchi geometry of finite energy classes, Adv. Math., 285, 182-219 (2015) ·Zbl 1327.53093 |
[35] | Darvas, T., Weak geodesic rays in the space of Kähler potentials and the class \(\mathcal{E}(X, \omega_0)\), J. Inst. Math. Jussieu, 16, 4, 837-858 (2017) ·Zbl 1377.53092 |
[36] | Darvas, T., Geometric Pluripotential Theory on Kähler Manifolds, Advances in Complex Geometry, vol. 735, 1-104 (2019), Amer. Math. Soc. ·Zbl 1439.32061 |
[37] | Darvas, T.; Di Nezza, E.; Lu, C. H., \( L^1\) metric geometry of big cohomology classes, Ann. Inst. Fourier (Grenoble), 68, 7, 3053-3086 (2018) ·Zbl 1505.53081 |
[38] | Darvas, T.; Di Nezza, E.; Lu, C. H., Monotonicity of non-pluripolar products and complex Monge-Ampère equations with prescribed singularity, Anal. PDE, 11, 8, 2049-2087 (2018) ·Zbl 1396.32011 |
[39] | Darvas, T.; Di Nezza, E.; Lu, H. C., The metric geometry of singularity types, J. Reine Angew. Math. (Crelles J.), 2021, 771, 137-170 (2021) ·Zbl 1503.32029 |
[40] | Demailly, J.-P., Complex analytic and differential geometry (2012) |
[41] | Demailly, J.-P., On the cohomology of pseudoeffective line bundles, (Complex Geometry and Dynamics (2015), Springer), 51-99 ·Zbl 1337.32030 |
[42] | Dervan, R., Uniform stability of twisted constant scalar curvature Kähler metrics, Int. Math. Res. Not., 2016, 15, 4728-4783 (2016) ·Zbl 1405.32032 |
[43] | Darvas, T.; Lu, C. H., Geodesic stability, the space of rays and uniform convexity in Mabuchi geometry, Geom. Topol., 24, 4, 1907-1967 (2020) ·Zbl 1479.32011 |
[44] | Darvas, T.; Lu, C. H.; Rubinstein, Y. A., Quantization in geometric pluripotential theory, Commun. Pure Appl. Math., 73, 5, 1100-1138 (2020) ·Zbl 1445.53062 |
[45] | Donaldson, S. K., Scalar curvature and projective embeddings, I, J. Differ. Geom., 59, 3, 479-522 (2001) ·Zbl 1052.32017 |
[46] | Donaldson, S. K., Scalar curvature and projective embeddings, II, Q. J. Math., 56, 3, 345-356 (2005) ·Zbl 1159.32012 |
[47] | Donaldson, S. K., Symmetric spaces, Kähler geometry and Hamiltonian dynamics, Transl. Am. Math. Soc., 196, 2, 13-33 (1999) ·Zbl 0972.53025 |
[48] | Demailly, J.-P.; Paun, M., Numerical characterization of the Kähler cone of a compact Kähler manifold, Ann. Math., 1247-1274 (2004) ·Zbl 1064.32019 |
[49] | Demailly, J.-P.; Peternell, T.; Schneider, M., Pseudo-effective line bundles on compact Kähler manifolds, Int. J. Math., 12, 06, 689-741 (2001) ·Zbl 1111.32302 |
[50] | Darvas, T.; Rubinstein, Y., Tian’s properness conjectures and Finsler geometry of the space of Kähler metrics, J. Am. Math. Soc., 30, 2, 347-387 (2017) ·Zbl 1386.32021 |
[51] | Guedj, V.; Zeriahi, A., Intrinsic capacities on compact Kähler manifolds, J. Geom. Anal., 15, 4, 607-639 (2005) ·Zbl 1087.32020 |
[52] | Guedj, V.; Zeriahi, A., The weighted Monge-Ampère energy of quasiplurisubharmonic functions, J. Funct. Anal., 250, 2, 442-482 (2007) ·Zbl 1143.32022 |
[53] | Guan, Q.; Zhou, X., Effectiveness of Demailly’s strong openness conjecture and related problems, Invent. Math., 202, 2, 635-676 (2015) ·Zbl 1333.32014 |
[54] | Kim, D., Equivalence of plurisubharmonic singularities and Siu-type metrics, Monatshefte Math., 178, 1, 85-95 (2015) ·Zbl 1341.32028 |
[55] | Kim, D.; Seo, H., Jumping numbers of analytic multiplier ideals (with an appendix by Sébastien Boucksom), Ann. Pol. Math., 124, 257-280 (2020) ·Zbl 1452.32037 |
[56] | Li, C., Geodesic rays and stability in the cscK problem (2020) |
[57] | Lu, Z., On the lower order terms of the asymptotic expansion of Tian-Yau-Zelditch, Am. J. Math., 122, 2, 235-273 (2000) ·Zbl 0972.53042 |
[58] | Ma, X.; Marinescu, G., Holomorphic Morse Inequalities and Bergman Kernels, vol. 254 (2007), Springer Science & Business Media ·Zbl 1135.32001 |
[59] | Odaka, Y., The GIT stability of polarized varieties via discrepancy, Ann. Math., 645-661 (2013) ·Zbl 1271.14067 |
[60] | Phong, D. H.; Sturm, J., Test configurations for K-stability and geodesic rays, J. Symplectic Geom., 5, 2, 221-247 (2007) ·Zbl 1193.53104 |
[61] | Phong, D. H.; Sturm, J., Regularity of geodesic rays and Monge-Ampère equations, Proc. Am. Math. Soc., 138, 10, 3637-3650 (2010) ·Zbl 1205.31004 |
[62] | Rashkovskii, A., Analytic approximations of plurisubharmonic singularities, Math. Z., 275, 3-4, 1217-1238 (2013) ·Zbl 1288.32047 |
[63] | Rashkovskii, A.; Sigurdsson, R., Green functions with singularities along complex spaces, Int. J. Math., 16, 04, 333-355 (2005) ·Zbl 1085.32018 |
[64] | Ross, J.; Singer, M., Asymptotics of partial density functions for divisors, J. Geom. Anal., 27, 3, 1803-1854 (2017) ·Zbl 1376.32029 |
[65] | Rubinstein, Y. A., Tian’s Properness Conjectures: An Introduction to Kähler Geometry, Geometric Analysis., vol. 333, 381-443 (2020), Birkhäuser: Birkhäuser Cham ·Zbl 1444.53001 |
[66] | Ross, J.; Witt Nyström, D., Analytic test configurations and geodesic rays, J. Symplectic Geom., 12, 1, 125-169 (2014) ·Zbl 1300.32021 |
[67] | Ross, J.; Witt Nyström, D., Envelopes of positive metrics with prescribed singularities, Ann. Fac. Sci. Toulouse Math. (6), 26, 3, 687-727 (2017) ·Zbl 1421.32032 |
[68] | Székelyhidi, G., Filtrations and test-configurations, Math. Ann., 362, 1-2, 451-484 (2015) ·Zbl 1360.53075 |
[69] | Tian, G., Kähler metrics on algebraic manifolds (1988), Harvard University, PhD thesis |
[70] | Tian, G., On a set of polarized Kähler metrics on algebraic manifolds, J. Differ. Geom., 32, 1, 99-130 (1990) ·Zbl 0706.53036 |
[71] | Tian, G., Kähler-Einstein metrics with positive scalar curvature, Invent. Math., 130, 1, 1-37 (1997) ·Zbl 0892.53027 |
[72] | Witt Nyström, D., Monotonicity of non-pluripolar Monge-Ampère masses, Indiana Univ. Math. J., 68, 2, 579-591 (2019) ·Zbl 1422.32041 |
[73] | Xia, M., Pluripotential-theoretic stability thresholds (2020) |
[74] | Xia, M., Mabuchi geometry of big cohomology classes with prescribed singularities (2021) |
[75] | Yau, S. T., Nonlinear analysis in geometry, Enseign. Math. (2), 33, 1-2, 109-158 (1987) ·Zbl 0631.53002 |
[76] | Zelditch, S., Szego kernels and a theorem of Tian, Int. Math. Res. Not., 1998, 6, 317-331 (1998) ·Zbl 0922.58082 |
[77] | Zelditch, S.; Zhou, P., Interface asymptotics of partial bergman kernels on S1-symmetric Kähler manifolds, J. Symplectic Geom., 17, 3, 793-856 (2019) ·Zbl 1431.53080 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.