Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

The closures of test configurations and algebraic singularity types.(English)Zbl 1487.32132

Summary: Given a Kähler manifold \(X\) with an ample line bundle \(L\), we consider the metric space of finite energy geodesic rays associated to the Chern class \(c_1(L)\). We characterize rays that can be approximated by ample test configurations. At the same time, we also characterize the closure of algebraic singularity types among all singularity types of quasi-plurisubharmonic functions, pointing out the very close relationship between these two seemingly unrelated problems.
By Bonavero’s holomorphic Morse inequalities, the arithmetic and non-pluripolar volumes of algebraic singularity types coincide. We show that in general the arithmetic volume dominates the non-pluripolar one, and equality holds exactly on the closure of algebraic singularity types. Analogously, we give an estimate for the Monge-Ampère energy of a general finite energy ray in terms of the arithmetic volumes along its Legendre transform. Equality holds exactly for rays approximable by test configurations.
Various other cohomological and potential theoretic characterizations are given in both settings. As applications, we give a concrete formula for the non-Archimedean Monge-Ampère energy in terms of asymptotic expansion, and show the continuity of the projection map from \(L^1\) rays to non-Archimedean rays.

MSC:

32Q15 Kähler manifolds
32L05 Holomorphic bundles and generalizations
32U05 Plurisubharmonic functions and generalizations

Cite

References:

[1]Apostolov, V.; Calderbank, D. M.J.; Gauduchon, P.; Tønnesen-Friedman, C. W., Hamiltonian 2-forms in Kähler geometry, III Extremal metrics and stability, Invent. Math., 173, 3, 547-601 (2008) ·Zbl 1145.53055
[2]Apostol, T. M., Mathematical Analysis (1974), Addison-Wesley Publishing Co.: Addison-Wesley Publishing Co. Reading, Mass.-London-Don Mills, Ont., xvii+492 pp. ·Zbl 0309.26002
[3]Berman, R. J.; Boucksom, S., Growth of balls of holomorphic sections and energy at equilibrium, Invent. Math., 181, 2, 337-394 (2010) ·Zbl 1208.32020
[4]Berman, R.; Boucksom, S.; Jonsson, M., A variational approach to the Yau-Tian-Donaldson conjecture, J. Am. Math. Soc. (2021) ·Zbl 1487.32141
[5]Berman, R. J.; Darvas, T.; Lu, C., Convexity of the extended K-energy and the large time behavior of the weak Calabi flow, Geom. Topol., 21, 5, 2945-2988 (2017) ·Zbl 1372.53073
[6]Boucksom, S.; Eriksson, D., Spaces of norms, determinant of cohomology and Fekete points in non-Archimedean geometry, Adv. Math., 378, Article 107501 pp. (2021) ·Zbl 1460.32044
[7]Boucksom, S.; Eyssidieux, P.; Guedj, V.; Zeriahi, A., Monge-Ampère equations in big cohomology classes, Acta Math., 205, 2, 199-262 (2010) ·Zbl 1213.32025
[8]Berndtsson, B., Curvature of vector bundles associated to holomorphic fibrations, Ann. Math., 531-560 (2009) ·Zbl 1195.32012
[9]Berndtsson, B., Lelong numbers and vector bundles (2017) ·Zbl 1457.32023
[10]Berndtsson, B., Probability measures associated to geodesics in the space of Kähler metrics, (Algebraic and Analytic Microlocal Analysis. Algebraic and Analytic Microlocal Analysis, Springer Proc. Math. Stat., vol. 269 (2018), Springer: Springer Cham), 395-419 ·Zbl 1420.32014
[11]Berman, R. J.; Freixas i. Montplet, G., An arithmetic Hilbert-Samuel theorem for singular hermitian line bundles and cusp forms, Compos. Math., 150, 10, 1703-1728 (2014) ·Zbl 1316.14048
[12]Boucksom, S.; Favre, C.; Jonsson, M., Valuations and plurisubharmonic singularities, Publ. Res. Inst. Math. Sci., 44, 2, 449-494 (2008) ·Zbl 1146.32017
[13]Burgos Gil, J. I.; Gubler, W.; Jell, P.; Künnemann, K.; Martin, F.; Lazarsfeld, R., Differentiability of non-archimedean volumes and non-archimedean Monge-Ampère equations, Algebr. Geom., 7, 2, 113-152 (2020) ·Zbl 1457.32056
[14]Boucksom, S.; Hisamoto, T.; Jonsson, M., Uniform K-stability, Duistermaat-Heckman measures and singularities of pairs, Ann. Inst. Fourier, 67, 2, 743-841 (2017) ·Zbl 1391.14090
[15]Boucksom, S.; Hisamoto, T.; Jonsson, M., Uniform K-stability and asymptotics of energy functionals in Kähler geometry, J. Eur. Math. Soc., 21, 9, 2905-2944 (2019) ·Zbl 1478.53115
[16]Boucksom, S.; Jonsson, M., A non-Archimedean approach to K-stability (2018)
[17]Boucksom, S.; Jonsson, M., Global pluripotential theory over a trivially valued field (2021)
[18]Błocki, Z.; Kołodziej, S., On regularization of plurisubharmonic functions on manifolds, Proc. Am. Math. Soc., 135, 7, 2089-2093 (2007) ·Zbl 1116.32024
[19]Berman, R.; Keller, J., Bergman geodesics, (Complex Monge-Ampère Equations and Geodesics in the Space of Kähler Metrics. Complex Monge-Ampère Equations and Geodesics in the Space of Kähler Metrics, Lecture Notes in Math., vol. 2038 (2012), Springer: Springer Heidelberg), 283-302 ·Zbl 1231.32002
[20]Bonavero, L., Inégalités de morse holomorphes singulières, J. Geom. Anal., 8, 3, 409-425 (1998) ·Zbl 0966.32011
[21]Boucksom, S., On the volume of a line bundle, Int. J. Math., 13, 10, 1043-1063 (2002) ·Zbl 1101.14008
[22]Boucksom, S., Singularities of plurisubharmonic functions and multiplier ideals (2017)
[23]Bedford, E.; Taylor, B. A., The Dirichlet problem for a complex Monge-Ampère equation, Invent. Math., 37, 1, 1-44 (1976) ·Zbl 0315.31007
[24]Cao, J., Numerical dimension and a Kawamata-Viehweg-Nadel-type vanishing theorem on compact Kähler manifolds, Compos. Math., 150, 11, 1869-1902 (2014) ·Zbl 1323.32012
[25]Catlin, D., The Bergman kernel and a theorem of Tian, (Analysis and Geometry in Several Complex Variables (1999), Springer), 1-23 ·Zbl 0941.32002
[26]Chen, X.; Cheng, J., On the constant scalar curvature Kähler metrics, general automorphism group (2018)
[27]Chen, X.; Cheng, J., On the constant scalar curvature Kähler metrics (I)—a priori estimates, J. Am. Math. Soc. (2021) ·Zbl 1472.14042
[28]Chen, X.; Cheng, J., On the constant scalar curvature Kähler metrics (II)—existence results, J. Am. Math. Soc. (2021) ·Zbl 1477.14067
[29]Chen, X., The space of Kähler metrics, J. Differ. Geom., 56, 2, 189-234 (2000) ·Zbl 1041.58003
[30]Chambert-Loir, A., Mesures et équidistribution sur les espaces de Berkovich, J. Reine Angew. Math. (Crelles J.), 2006, 595, 215-235 (2006) ·Zbl 1112.14022
[31]Chambert-Loir, A.; Ducros, A., Formes différentielles réelles et courants sur les espaces de Berkovich (2012)
[32]Chen, X. X.; Tang, Y., Test configuration and geodesic rays, (Géométrie différentielle, physique mathématique, mathématiques et société. I. Géométrie différentielle, physique mathématique, mathématiques et société. I, Astérisque, vol. 321 (2008)), 139-167 ·Zbl 1181.53058
[33]Chu, J.; Tosatti, V.; Weinkove, B., \( C^{1 , 1}\)-regularity for degenerate complex Monge-Ampère equations and geodesic rays, Commun. Partial Differ. Equ., 43, 2, 292-312 (2018) ·Zbl 1404.32075
[34]Darvas, T., The Mabuchi geometry of finite energy classes, Adv. Math., 285, 182-219 (2015) ·Zbl 1327.53093
[35]Darvas, T., Weak geodesic rays in the space of Kähler potentials and the class \(\mathcal{E}(X, \omega_0)\), J. Inst. Math. Jussieu, 16, 4, 837-858 (2017) ·Zbl 1377.53092
[36]Darvas, T., Geometric Pluripotential Theory on Kähler Manifolds, Advances in Complex Geometry, vol. 735, 1-104 (2019), Amer. Math. Soc. ·Zbl 1439.32061
[37]Darvas, T.; Di Nezza, E.; Lu, C. H., \( L^1\) metric geometry of big cohomology classes, Ann. Inst. Fourier (Grenoble), 68, 7, 3053-3086 (2018) ·Zbl 1505.53081
[38]Darvas, T.; Di Nezza, E.; Lu, C. H., Monotonicity of non-pluripolar products and complex Monge-Ampère equations with prescribed singularity, Anal. PDE, 11, 8, 2049-2087 (2018) ·Zbl 1396.32011
[39]Darvas, T.; Di Nezza, E.; Lu, H. C., The metric geometry of singularity types, J. Reine Angew. Math. (Crelles J.), 2021, 771, 137-170 (2021) ·Zbl 1503.32029
[40]Demailly, J.-P., Complex analytic and differential geometry (2012)
[41]Demailly, J.-P., On the cohomology of pseudoeffective line bundles, (Complex Geometry and Dynamics (2015), Springer), 51-99 ·Zbl 1337.32030
[42]Dervan, R., Uniform stability of twisted constant scalar curvature Kähler metrics, Int. Math. Res. Not., 2016, 15, 4728-4783 (2016) ·Zbl 1405.32032
[43]Darvas, T.; Lu, C. H., Geodesic stability, the space of rays and uniform convexity in Mabuchi geometry, Geom. Topol., 24, 4, 1907-1967 (2020) ·Zbl 1479.32011
[44]Darvas, T.; Lu, C. H.; Rubinstein, Y. A., Quantization in geometric pluripotential theory, Commun. Pure Appl. Math., 73, 5, 1100-1138 (2020) ·Zbl 1445.53062
[45]Donaldson, S. K., Scalar curvature and projective embeddings, I, J. Differ. Geom., 59, 3, 479-522 (2001) ·Zbl 1052.32017
[46]Donaldson, S. K., Scalar curvature and projective embeddings, II, Q. J. Math., 56, 3, 345-356 (2005) ·Zbl 1159.32012
[47]Donaldson, S. K., Symmetric spaces, Kähler geometry and Hamiltonian dynamics, Transl. Am. Math. Soc., 196, 2, 13-33 (1999) ·Zbl 0972.53025
[48]Demailly, J.-P.; Paun, M., Numerical characterization of the Kähler cone of a compact Kähler manifold, Ann. Math., 1247-1274 (2004) ·Zbl 1064.32019
[49]Demailly, J.-P.; Peternell, T.; Schneider, M., Pseudo-effective line bundles on compact Kähler manifolds, Int. J. Math., 12, 06, 689-741 (2001) ·Zbl 1111.32302
[50]Darvas, T.; Rubinstein, Y., Tian’s properness conjectures and Finsler geometry of the space of Kähler metrics, J. Am. Math. Soc., 30, 2, 347-387 (2017) ·Zbl 1386.32021
[51]Guedj, V.; Zeriahi, A., Intrinsic capacities on compact Kähler manifolds, J. Geom. Anal., 15, 4, 607-639 (2005) ·Zbl 1087.32020
[52]Guedj, V.; Zeriahi, A., The weighted Monge-Ampère energy of quasiplurisubharmonic functions, J. Funct. Anal., 250, 2, 442-482 (2007) ·Zbl 1143.32022
[53]Guan, Q.; Zhou, X., Effectiveness of Demailly’s strong openness conjecture and related problems, Invent. Math., 202, 2, 635-676 (2015) ·Zbl 1333.32014
[54]Kim, D., Equivalence of plurisubharmonic singularities and Siu-type metrics, Monatshefte Math., 178, 1, 85-95 (2015) ·Zbl 1341.32028
[55]Kim, D.; Seo, H., Jumping numbers of analytic multiplier ideals (with an appendix by Sébastien Boucksom), Ann. Pol. Math., 124, 257-280 (2020) ·Zbl 1452.32037
[56]Li, C., Geodesic rays and stability in the cscK problem (2020)
[57]Lu, Z., On the lower order terms of the asymptotic expansion of Tian-Yau-Zelditch, Am. J. Math., 122, 2, 235-273 (2000) ·Zbl 0972.53042
[58]Ma, X.; Marinescu, G., Holomorphic Morse Inequalities and Bergman Kernels, vol. 254 (2007), Springer Science & Business Media ·Zbl 1135.32001
[59]Odaka, Y., The GIT stability of polarized varieties via discrepancy, Ann. Math., 645-661 (2013) ·Zbl 1271.14067
[60]Phong, D. H.; Sturm, J., Test configurations for K-stability and geodesic rays, J. Symplectic Geom., 5, 2, 221-247 (2007) ·Zbl 1193.53104
[61]Phong, D. H.; Sturm, J., Regularity of geodesic rays and Monge-Ampère equations, Proc. Am. Math. Soc., 138, 10, 3637-3650 (2010) ·Zbl 1205.31004
[62]Rashkovskii, A., Analytic approximations of plurisubharmonic singularities, Math. Z., 275, 3-4, 1217-1238 (2013) ·Zbl 1288.32047
[63]Rashkovskii, A.; Sigurdsson, R., Green functions with singularities along complex spaces, Int. J. Math., 16, 04, 333-355 (2005) ·Zbl 1085.32018
[64]Ross, J.; Singer, M., Asymptotics of partial density functions for divisors, J. Geom. Anal., 27, 3, 1803-1854 (2017) ·Zbl 1376.32029
[65]Rubinstein, Y. A., Tian’s Properness Conjectures: An Introduction to Kähler Geometry, Geometric Analysis., vol. 333, 381-443 (2020), Birkhäuser: Birkhäuser Cham ·Zbl 1444.53001
[66]Ross, J.; Witt Nyström, D., Analytic test configurations and geodesic rays, J. Symplectic Geom., 12, 1, 125-169 (2014) ·Zbl 1300.32021
[67]Ross, J.; Witt Nyström, D., Envelopes of positive metrics with prescribed singularities, Ann. Fac. Sci. Toulouse Math. (6), 26, 3, 687-727 (2017) ·Zbl 1421.32032
[68]Székelyhidi, G., Filtrations and test-configurations, Math. Ann., 362, 1-2, 451-484 (2015) ·Zbl 1360.53075
[69]Tian, G., Kähler metrics on algebraic manifolds (1988), Harvard University, PhD thesis
[70]Tian, G., On a set of polarized Kähler metrics on algebraic manifolds, J. Differ. Geom., 32, 1, 99-130 (1990) ·Zbl 0706.53036
[71]Tian, G., Kähler-Einstein metrics with positive scalar curvature, Invent. Math., 130, 1, 1-37 (1997) ·Zbl 0892.53027
[72]Witt Nyström, D., Monotonicity of non-pluripolar Monge-Ampère masses, Indiana Univ. Math. J., 68, 2, 579-591 (2019) ·Zbl 1422.32041
[73]Xia, M., Pluripotential-theoretic stability thresholds (2020)
[74]Xia, M., Mabuchi geometry of big cohomology classes with prescribed singularities (2021)
[75]Yau, S. T., Nonlinear analysis in geometry, Enseign. Math. (2), 33, 1-2, 109-158 (1987) ·Zbl 0631.53002
[76]Zelditch, S., Szego kernels and a theorem of Tian, Int. Math. Res. Not., 1998, 6, 317-331 (1998) ·Zbl 0922.58082
[77]Zelditch, S.; Zhou, P., Interface asymptotics of partial bergman kernels on S1-symmetric Kähler manifolds, J. Symplectic Geom., 17, 3, 793-856 (2019) ·Zbl 1431.53080
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp