[1] | Acerbi, E., Fusco, N.: Regularity for minimizers of nonquadratic functionals: the case 1 < p < 2. J. Math. Anal. Appl. 140, 115-135 (1989) Zbl 0686.49004 MR 997847 ·Zbl 0686.49004 |
[2] | Acerbi, E., Mingione, G.: Regularity results for a class of functionals with non-standard growth. Arch. Ration. Mech. Anal. 156, 121-140 (2001) Zbl 0984.49020 MR 1814973 ·Zbl 0984.49020 |
[3] | Acerbi, E., Mingione, G.: Regularity results for stationary electro-rheological fluids. Arch. Ration. Mech. Anal. 164, 213-259 (2002) Zbl 1038.76058 MR 1930392 ·Zbl 1038.76058 |
[4] | Acerbi, E., Mingione, G.: Gradient estimates for the p.x/-Laplacean system. J. Reine Angew. Math. 584, 117-148 (2005) Zbl 1093.76003 MR 2155087 ·Zbl 1093.76003 |
[5] | Azzollini, A., d’Avenia, P., Pomponio, A.: Quasilinear elliptic equations in R N via variational methods and Orlicz-Sobolev embeddings. Calc. Var. Partial Differential Equations 49, 197-213 (2014) Zbl 1285.35039 MR 3148112 ·Zbl 1285.35039 |
[6] | Balci, A. K., Diening, L., Surnachev, M.: New examples on Lavrentiev gap using fractals. Calc. Var. Partial Differential Equations 59, art. 180, 34 pp. (2020) Zbl 1453.35082 MR 4153906 ·Zbl 1453.35082 |
[7] | Baroni, P.: Riesz potential estimates for a general class of quasilinear equations. Calc. Var. Partial Differential Equations 53, 803-846 (2015) Zbl 1318.35041 MR 3347481 ·Zbl 1318.35041 |
[8] | Baroni, P., Colombo, M., Mingione, G.: Harnack inequalities for double phase functionals. Nonlinear Anal. 121, 206-222 (2015) Zbl 1321.49059 MR 3348922 ·Zbl 1321.49059 |
[9] | Baroni, P., Colombo, M., Mingione, G.: Nonautonomous functionals, borderline cases and related function classes. Algebra i Analiz 27, 6-50 (2015) Zbl 1335.49057 MR 3570955 |
[10] | Baroni, P., Colombo, M., Mingione, G.: Regularity for general functionals with double phase. Calc. Var. Partial Differential Equations 57, art. 62, 48 pp. (2018) Zbl 1394.49034 MR 3775180 ·Zbl 1394.49034 |
[11] | Beck, L., Mingione, G.: Lipschitz bounds and nonuniform ellipticity. Comm. Pure Appl. Math. 73, 944-1034 (2020) Zbl 1445.35140 MR 4078712 ·Zbl 1445.35140 |
[12] | Bella, P., Schäffner, M.: On the regularity of minimizers for scalar integral functionals with .p; q/-growth. Anal. PDE 13, 2241-2257 (2020) Zbl 07324216 MR 4175825 ·Zbl 1460.49027 |
[13] | Benyaiche, A., Harjulehto, P., Hästö, P., Karppinen, A.: The weak Harnack inequality for unbounded supersolutions of equations with generalized Orlicz growth. J. Differential Equa-tions 275, 790-814 (2021) Zbl 1455.35088 MR 4191341 ·Zbl 1455.35088 |
[14] | Byun, S.-S., Cho, Y.: Nonlinear gradient estimates for generalized elliptic equations with non-standard growth in nonsmooth domains. Nonlinear Anal. 140, 145-165 (2016) Zbl 1338.35167 MR 3492733 ·Zbl 1338.35167 |
[15] | Byun, S.-S., Oh, J.: Global gradient estimates for non-uniformly elliptic equations. Calc. Var. Partial Differential Equations 56, art. 46, 36 pp. (2017) Zbl 1378.35139 MR 3624942 ·Zbl 1378.35139 |
[16] | Byun, S.-S., Oh, J.: Global gradient estimates for the borderline case of double phase prob-lems with BMO coefficients in nonsmooth domains. J. Differential Equations 263, 1643-1693 (2017) Zbl 1372.35115 MR 3632230 ·Zbl 1372.35115 |
[17] | Byun, S.-S., Oh, J.: Regularity results for generalized double phase functionals. Anal. PDE 13, 1269-1300 (2020) Zbl 07271830 MR 4149062 ·Zbl 1477.49057 |
[18] | Byun, S.-S., Ok, J.: On W 1;q. / -estimates for elliptic equations of p.x/-Laplacian type. J. Math. Pures Appl. (9) 106, 512-545 (2016) Zbl 1344.35058 MR 3520446 ·Zbl 1344.35058 |
[19] | Byun, S.-S., Ok, J., Youn, Y.: Global gradient estimates for spherical quasi-minimizers of integral functionals with p.x/-growth. Nonlinear Anal. 177, 186-208 (2018) Zbl 1402.35095 MR 3865194 ·Zbl 1402.35095 |
[20] | Byun, S.-S., Ryu, S.: Global weighted estimates for the gradient of solutions to nonlinear elliptic equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 30, 291-313 (2013) Zbl 1292.35127 MR 3035978 ·Zbl 1292.35127 |
[21] | Capone, C., Cruz-Uribe, D., Fiorenza, A.: A modular variable Orlicz inequality for the local maximal operator. Georgian Math. J. 25, 201-206 (2018) Zbl 1392.42019 MR 3808281 ·Zbl 1392.42019 |
[22] | Cencelj, M., Rȃdulescu, V. D., Repovš, D. D.: Double phase problems with variable growth. Nonlinear Anal. 177, 270-287 (2018) Zbl 1421.35235 MR 3865198 ·Zbl 1421.35235 |
[23] | Chlebicka, I., Gwiazda, P., Zatorska-Goldstein, A.: Well-posedness of parabolic equations in the non-reflexive and anisotropic Musielak-Orlicz spaces in the class of renormalized solu-tions. J. Differential Equations 265, 5716-5766 (2018) Zbl 1397.35126 MR 3857497 ·Zbl 1397.35126 |
[24] | Chlebicka, I., Gwiazda, P., Zatorska-Goldstein, A.: Parabolic equation in time and space dependent anisotropic Musielak-Orlicz spaces in absence of Lavrentiev’s phenomenon. Ann. Inst. H. Poincaré Anal. Non Linéaire 36, 1431-1465 (2019) Zbl 1419.35092 MR 3985549 ·Zbl 1419.35092 |
[25] | Colombo, M., Mingione, G.: Bounded minimisers of double phase variational integrals. Arch. Ration. Mech. Anal. 218, 219-273 (2015) Zbl 1325.49042 MR 3360738 ·Zbl 1325.49042 |
[26] | Colombo, M., Mingione, G.: Regularity for double phase variational problems. Arch. Ration. Mech. Anal. 215, 443-496 (2015) Zbl 1322.49065 MR 3294408 ·Zbl 1322.49065 |
[27] | Colombo, M., Mingione, G.: Calderón-Zygmund estimates and non-uniformly elliptic opera-tors. J. Funct. Anal. 270, 1416-1478 (2016) Zbl 06535749 MR 3447716 ·Zbl 1479.35158 |
[28] | Coscia, A., Mingione, G.: Hölder continuity of the gradient of p.x/-harmonic mappings. C. R. Acad. Sci. Paris Sér. I Math. 328, 363-368 (1999) Zbl 0920.49020 MR 1675954 ·Zbl 0920.49020 |
[29] | Cruz-Uribe, D., Hästö, P.: Extrapolation and interpolation in generalized Orlicz spaces. Trans. Amer. Math. Soc. 370, 4323-4349 (2018) Zbl 1391.46037 MR 3811530 ·Zbl 1391.46037 |
[30] | De Filippis, C., Mingione, G.: A borderline case of Calderón-Zygmund estimates for nonuni-formly elliptic problems. Algebra i Analiz 31, 82-115 (2019) Zbl 1435.35127 MR 3985927 |
[31] | De Filippis, C., Oh, J.: Regularity for multi-phase variational problems. J. Differential Equa-tions 267, 1631-1670 (2019) Zbl 1422.49037 MR 3945612 ·Zbl 1422.49037 |
[32] | DiBenedetto, E.: C 1C˛l ocal regularity of weak solutions of degenerate elliptic equations. Nonlinear Anal. 7, 827-850 (1983) Zbl 0539.35027 MR 709038 ·Zbl 0539.35027 |
[33] | Diening, L., Ettwein, F.: Fractional estimates for non-differentiable elliptic systems with gen-eral growth. Forum Math. 20, 523-556 (2008) Zbl 1188.35069 MR 2418205 ·Zbl 1188.35069 |
[34] | Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Vari-able Exponents. Lecture Notes in Math. 2017, Springer, Heidelberg (2011) Zbl 1222.46002 MR 2790542 ·Zbl 1222.46002 |
[35] | Diening, L., Stroffolini, B., Verde, A.: Everywhere regularity of functionals with ’-growth. Manuscripta Math. 129, 449-481 (2009) Zbl 1168.49035 MR 2520895 ·Zbl 1168.49035 |
[36] | Eleuteri, M., Marcellini, P., Mascolo, E.: Lipschitz continuity for energy integrals with vari-able exponents. Rend. Lincei Mat. Appl. 27, 61-87 (2016) Zbl 1338.35169 MR 3470676 ·Zbl 1338.35169 |
[37] | Eleuteri, M., Marcellini, P., Mascolo, E.: Lipschitz estimates for systems with ellipticity con-ditions at infinity. Ann. Mat. Pura Appl. (4) 195, 1575-1603 (2016) Zbl 1354.35035 MR 3537963 ·Zbl 1354.35035 |
[38] | Eleuteri, M., Marcellini, P., Mascolo, E.: Regularity for scalar integrals without structure con-ditions. Adv. Calc. Var. 13, 279-300 (2020) Zbl 1445.35159 MR 4116617 ·Zbl 1445.35159 |
[39] | Esposito, L., Leonetti, F., Mingione, G.: Sharp regularity for functionals with .p; q/ growth. J. Differential Equations 204, 5-55 (2004) Zbl 1072.49024 MR 2076158 ·Zbl 1072.49024 |
[40] | Evans, L. C.: A new proof of local C 1;˛r egularity for solutions of certain degenerate elliptic p.d.e. J. Differential Equations 45, 356-373 (1982) Zbl 0508.35036 MR 672713 ·Zbl 0508.35036 |
[41] | Fan, X.: Global C 1;˛r egularity for variable exponent elliptic equations in divergence form. J. Differential Equations 235, 397-417 (2007) Zbl 1143.35040 MR 2317489 ·Zbl 1143.35040 |
[42] | Fan, X., Zhao, D.: A class of De Giorgi type and Hölder continuity. Nonlinear Anal. 36, 295-318 (1999) Zbl 0927.46022 MR 1688232 ·Zbl 0927.46022 |
[43] | Fang, Y., Zhang, C., Zhang, X.: Estimates for multi-phase problems in Campanato space. Preprint (2019). |
[44] | Giannetti, F., Passarelli di Napoli, A.: Regularity results for a new class of functionals with non-standard growth conditions. J. Differential Equations 254, 1280-1305 (2013) Zbl 1255.49064 MR 2997371 ·Zbl 1255.49064 |
[45] | Giannetti, F., Passarelli di Napoli, A., Ragusa, M. A., Tachikawa, A.: Partial regularity for minimizers of a class of non autonomous functionals with nonstandard growth. Calc. Var. Partial Differential Equations 56, art. 153, 29 pp. (2017) Zbl 1383.49047 MR 3709297 ·Zbl 1383.49047 |
[46] | Giaquinta, M.: Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Ann. of Math. Stud. 105, Princeton Univ. Press, Princeton, NJ (1983) Zbl 0516.49003 MR 717034 ·Zbl 0516.49003 |
[47] | Giaquinta, M., Giusti, E.: Differentiability of minima of nondifferentiable functionals. Invent. Math. 72, 285-298 (1983) Zbl 0513.49003 MR 700772 ·Zbl 0513.49003 |
[48] | Giaquinta, M., Giusti, E.: Global C 1; ·Zbl 0528.35014 |
[49] | ˛-regularity for second order quasilinear elliptic equa-tions in divergence form. J. Reine Angew. Math. 351, 55-65 (1984) Zbl 0528.35014 MR 749677 ·Zbl 0528.35014 |
[50] | Giusti, E.: Direct Methods in the Calculus of Variations. World Sci., River Edge, NJ (2003) Zbl 1028.49001 MR 1962933 ·Zbl 1028.49001 |
[51] | Grafakos, L.: Classical Fourier Analysis. 3rd ed., Grad. Texts in Math. 249, Springer, New York (2014) Zbl 1304.42001 MR 3243734 ·Zbl 1304.42001 |
[52] | Harjulehto, P., Hästö, P.: Orlicz Spaces and Generalized Orlicz Spaces. Lecture Notes in Math. 2236, Springer, Cham (2019) Zbl 1436.46002 MR 3931352 ·Zbl 1436.46002 |
[53] | Harjulehto, P., Hästö, P., Karppinen, A.: Local higher integrability of the gradient of a quasi-minimizer under generalized Orlicz growth conditions. Nonlinear Anal. 177, 543-552 (2018) Zbl 1403.49034 MR 3886589 ·Zbl 1403.49034 |
[54] | Harjulehto, P., Hästö, P., Klén, R.: Generalized Orlicz spaces and related PDE. Nonlinear Anal. 143, 155-173 (2016) Zbl 1360.46029 MR 3516828 ·Zbl 1360.46029 |
[55] | Harjulehto, P., Hästö, P., Lee, M.: Hölder continuity of quasiminimizers and !-minimizers with generalized Orlicz growth. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 22, 549-582 (2021) ·Zbl 1482.46034 |
[56] | Harjulehto, P., Hästö, P., Toivanen, O.: Hölder regularity of quasiminimizers under generalized growth conditions. Calc. Var. Partial Differential Equations 56, art. 22, 26 pp. (2017) Zbl 1366.35036 MR 3606780 ·Zbl 1366.35036 |
[57] | Jin, T., Maz’ya, V., Van Schaftingen, J.: Pathological solutions to elliptic problems in diver-gence form with continuous coefficients. C. R. Math. Acad. Sci. Paris 347, 773-778 (2009) Zbl 1198.35055 MR 2543981 ·Zbl 1198.35055 |
[58] | Kim, Y., Ryu, S.: Global gradient estimates for parabolic equations with measurable nonlin-earities. Nonlinear Anal. 164, 77-99 (2017) Zbl 1373.35165 MR 3712021 ·Zbl 1373.35165 |
[59] | Lewis, J. L.: Regularity of the derivatives of solutions to certain degenerate elliptic equations. Indiana Univ. Math. J. 32, 849-858 (1983) Zbl 0554.35048 MR 721568 ·Zbl 0554.35048 |
[60] | Liang, S., Cai, M., Zheng, S.: Global regularity in Lorentz spaces for nonlinear elliptic equa-tions with L p. / log L-growth. J. Math. Anal. Appl. 467, 67-94 (2018) Zbl 1397.35052 MR 3834795 ·Zbl 1397.35052 |
[61] | Lieberman, G. M.: The natural generalization of the natural conditions of Ladyzhenskaya and Ural’tseva for elliptic equations. Comm. Partial Differential Equations 16, 311-361 (1991) Zbl 0742.35028 MR 1104103 ·Zbl 0742.35028 |
[62] | Maeda, F.-Y., Mizuta, Y., Ohno, T., Shimomura, T.: Sobolev’s inequality for double phase functionals with variable exponents. Forum Math. 31, 517-527 (2019) Zbl 1423.46049 MR 3918454 ·Zbl 1423.46049 |
[63] | Manfredi, J. J.: Regularity of the gradient for a class of nonlinear possibly degenerate elliptic equations. PhD thesis, Washington Univ. in St. Louis (1986) MR 2635642 |
[64] | Marcellini, P.: Regularity of minimizers of integrals of the calculus of variations with non-standard growth conditions. Arch. Ration. Mech. Anal. 105, 267-284 (1989) Zbl0667.49032 MR 969900 ·Zbl 0667.49032 |
[65] | Marcellini, P.: Regularity and existence of solutions of elliptic equations with p; q-growth conditions. J. Differential Equations 90, 1-30 (1991) Zbl 0724.35043 MR 1094446 ·Zbl 0724.35043 |
[66] | Marcellini, P.: Regularity for elliptic equations with general growth conditions. J. Differential Equations 105, 296-333 (1993) Zbl 0812.35042 MR 1240398 ·Zbl 0812.35042 |
[67] | Marcellini, P.: Everywhere regularity for a class of elliptic systems without growth conditions. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 23, 1-25 (1996) Zbl 0922.35031 MR 1401415 ·Zbl 0922.35031 |
[68] | Marcellini, P.: Regularity for some scalar variational problems under general growth condi-tions. J. Optim. Theory Appl. 90, 161-181 (1996) Zbl 0901.49030 MR 1397651 ·Zbl 0901.49030 |
[69] | Martio, O.: Reflection principle for solutions of elliptic partial differential equations and quasiregular mappings. Ann. Acad. Sci. Fenn. Ser. A I Math. 6, 179-187 (1981) Zbl 0473.30016 MR 639975 ·Zbl 0473.30016 |
[70] | Méndez, O., Lang, J.: Analysis on Function Spaces of Musielak-Orlicz Type. CRC Press, Boca Raton, FL (2019) Zbl 06993277 MR 3889985 ·Zbl 1500.46002 |
[71] | Mengesha, T., Phuc, N. C.: Global estimates for quasilinear elliptic equations on Reifenberg flat domains. Arch. Ration. Mech. Anal. 203, 189-216 (2012) Zbl 1255.35113 MR 2864410 ·Zbl 1255.35113 |
[72] | Mingione, G.: Regularity of minima: an invitation to the dark side of the calculus of variations. Appl. Math. 51, 355-426 (2006) Zbl 1164.49324 MR 2291779 ·Zbl 1164.49324 |
[73] | Ok, J.: Gradient estimates for elliptic equations with L p. / log L growth. Calc. Var. Partial Differential Equations 55, art. 26, 30 pp. (2016) Zbl 1342.35090 MR 3465442 ·Zbl 1342.35090 |
[74] | Ok, J.: Regularity of !-minimizers for a class of functionals with non-standard growth. Calc. Var. Partial Differential Equations 56, art. 48, 31 pp. (2017) Zbl 1369.49050 MR 3626319 ·Zbl 1369.49050 |
[75] | Ok, J.: Harnack inequality for a class of functionals with non-standard growth via De Giorgi’s method. Adv. Nonlinear Anal. 7, 167-182 (2018) Zbl 1397.35115 MR 3794882 ·Zbl 1397.35115 |
[76] | Rȃdulescu, V. D.: Nonlinear elliptic equations with variable exponent: old and new. Nonlinear Anal. 121, 336-369 (2015) Zbl 1321.35030 MR 3348928 ·Zbl 1321.35030 |
[77] | Ragusa, M. A., Tachikawa, A.: Regularity for minimizers for functionals of double phase with variable exponents. Adv. Nonlinear Anal. 9, 710-728 (2020) Zbl 1420.35145 MR 3985000 ·Zbl 1420.35145 |
[78] | Shi, X., Rȃdulescu, V. D., Repovš, D. D., Zhang, Q.: Multiple solutions of double phase vari-ational problems with variable exponent. Adv. Calc. Var. 13, 385-401 (2020) Zbl 1454.49006 MR 4156782 ·Zbl 1454.49006 |
[79] | Tolksdorf, P.: Regularity for a more general class of quasilinear elliptic equations. J. Differen-tial Equations 51, 126-150 (1984) Zbl 0488.35017 MR 727034 ·Zbl 0488.35017 |
[80] | Uhlenbeck, K.: Regularity for a class of non-linear elliptic systems. Acta Math. 138, 219-240 (1977) Zbl 0372.35030 MR 474389 ·Zbl 0372.35030 |
[81] | Ural’tseva, N. N.: Degenerate quasilinear elliptic systems. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklova 7, 184-222 (1968) (in Russian) Zbl 0196.12501 MR 0244628 ·Zbl 0199.42502 |
[82] | Wang, B., Liu, D., Zhao, P.: Hölder continuity for nonlinear elliptic problem in Musielak-Orlicz-Sobolev space. J. Differential Equations 266, 4835-4863 (2019) Zbl 1420.35099 MR 3912735 ·Zbl 1420.35099 |
[83] | Wang, L.: Compactness methods for certain degenerate elliptic systems. Manuscripta Math. 78, 273-285 (1993) Zbl 0819.35067 MR 1206157 ·Zbl 0819.35067 |
[84] | Wang, L.: Compactness methods for certain degenerate elliptic equations. J. Differential Equa-tions 107, 341-350 (1994) Zbl 0792.35067 MR 1264526 ·Zbl 0792.35067 |
[85] | Zhang, Q., Rȃdulescu, V. D.: Double phase anisotropic variational problems and combined effects of reaction and absorption terms. J. Math. Pures Appl. (9) 118, 159-203 (2018) Zbl 1404.35191 MR 3852472 ·Zbl 1404.35191 |
[86] | Zhikov, V. V.: Averaging of functionals of the calculus of variations and elasticity theory. Izv. Akad. Nauk SSSR Ser. Mat. 50, 675-710, 877 (1986) (in Russian) Zbl 0599.49031 MR 0864171 |
[87] | Zhikov, V. V.: On Lavrentiev’s phenomenon. Russian J. Math. Phys. 3, 249-269 (1995) Zbl 0910.49020 MR 1350506 ·Zbl 0910.49020 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.