[1] | Baker, A.; Davenport, H., The equations \(3x^2-2 =y^2\) and \(8x^2-7=z^2\), Q. J. Math. Oxf. Ser. (2), 20, 129-137 (1969) ·Zbl 0177.06802 ·doi:10.1093/qmath/20.1.129 |
[2] | Bertók, C.; Hajdu, L.; Pink, I.; Rábai, Z., Linear combinations of prime powers in binary recurrence sequences, Int. J. Number Theory, 13, 2, 261-271 (2017) ·Zbl 1409.11009 ·doi:10.1142/S1793042117500166 |
[3] | Bir, K.; Luca, F.; Togbé, A., On the \(x\)-coordinates of Pell equations which are Fibonacci numbers, Colloq. Math., 149, 75-85 (2018) ·Zbl 1420.11037 |
[4] | Bravo, EF; Gómez, CA; Luca, F., \(x\)-Coordinates of Pell equations as sums of two tribonacci numbers, Period. Math. Hung., 77, 175-190 (2019) ·Zbl 1424.11036 ·doi:10.1007/s10998-017-0226-8 |
[5] | Bugeaud, Y.; Mignotte, M.; Siksek, S., Classical and modular approaches to exponential Diophantine equations. I. Fibonacci and Lucas perfect powers, Ann. Math. (2), 163, 969-1018 (2006) ·Zbl 1113.11021 ·doi:10.4007/annals.2006.163.969 |
[6] | Cohen, H., Number Theory. Volume II: Analytic and Modern Tools (2007), New York: Springer, New York ·Zbl 1119.11002 |
[7] | Ddamulira, M., Luca, F.: On the \(x\)-coordinates of Pell equations which are \(k\)-generalized Fibonacci numbers. J. Number Theory (2018). 10.1016/j.jnt.2019.07.006 ·Zbl 1447.11025 |
[8] | Díaz Alvarado, S., Luca, F.: Fibonacci numbers which are sums of two repdigits. In: Proceedings of the XIVth International Conference on Fibonacci Numbers and Their Applications, Sociedad Matemática Mexicana, Aportaciones Matemáticas, Investigación, vol. 20, pp. 97-108 (2011) ·Zbl 1287.11021 |
[9] | Dossavi-Yovo, A.; Luca, F.; Togbé, A., On the \(x\)-coordinates of Pell equations which are rep-digits, Publ. Math. Debr., 88, 381-399 (2016) ·Zbl 1389.11076 ·doi:10.5486/PMD.2016.7378 |
[10] | Dujella, A.; Pethő, A., A generalization of a theorem of Baker and Davenport, Q. J. Math. Oxf., 49, 291-306 (1998) ·Zbl 0911.11018 ·doi:10.1093/qmathj/49.3.291 |
[11] | Faye, B.; Luca, F., On \(x\)-coordinates of Pell equations which are repdigits, Fibonacci Q., 56, 52-62 (2018) ·Zbl 1459.11082 |
[12] | Gómez, C.A., Luca, F.: Zeckendorf representations with at most two terms to \(x\)-coordinates of Pell equations. Sci. China Math. (2019). 10.1007/s11425-017-9283-6 ·Zbl 1455.11031 |
[13] | Luca, F., Distinct digits in base \(b\) expansions of linear recurrence sequences, Quaest. Math., 23, 389-404 (2000) ·Zbl 1030.11004 ·doi:10.2989/16073600009485986 |
[14] | Luca, F.; Stănică, P., Fibonacci numbers of the form \(p^a \pm p^b\), Congr. Numer., 194, 177-183 (2009) ·Zbl 1273.11030 |
[15] | Luca, F.; Szalay, L., Fibonacci numbers of the form \(p^a \pm p^b + 1\), Fibonacci Q., 45, 98-103 (2007) ·Zbl 1228.11021 |
[16] | Luca, F.; Togbé, A., On the \(x\)-coordinates of Pell equations which are Fibonacci numbers, Math. Scand., 122, 18-30 (2018) ·Zbl 1416.11027 ·doi:10.7146/math.scand.a-97271 |
[17] | Luca, F., Montejano, A., Szalay, L., Togbé, A.: On the \(x\)-coordinates of Pell equations which are Tribonacci numbers. Acta Arith. (2019) ·Zbl 1420.11061 |
[18] | Marques, D.; Togbé, A., Fibonacci and Lucas numbers of the form \(2^a + 3^b + 5^c\), Proc. Jpn. Acad. Ser. A, 89, 47-50 (2013) ·Zbl 1362.11018 ·doi:10.3792/pjaa.89.47 |
[19] | Matveev, EM, An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers, Izv. Math., 64, 1217-1269 (2000) ·Zbl 1013.11043 ·doi:10.1070/IM2000v064n06ABEH000314 |
[20] | Meher, NK; Rout, SS, Linear combinations of prime powers in sums of terms of binary recurrence sequences, Lith. Math. J., 57, 4, 506-520 (2017) ·Zbl 1420.11031 ·doi:10.1007/s10986-017-9374-z |
[21] | Pethő, A., Perfect powers in second order linear recurrences, J. Number Theory, 15, 5-13 (1982) ·Zbl 0488.10009 ·doi:10.1016/0022-314X(82)90079-8 |
[22] | Pethő, A., The Pell sequence contains only trivial perfect powers. Proceedings of Sets Graphs and Numbers, Coll. Math. Soc. János Bolyai, 60, 561-568 (1992) ·Zbl 0790.11021 |
[23] | Pethő, A.; Tichy, RF, \(S\)-unit equations, linear recurrences and digit expansions, Publ. Math. Debr., 42, 145-154 (1993) ·Zbl 0792.11006 |
[24] | Shorey, TN; Stewart, CL, On the Diophantine equation \(ax^{2t} + bx^{ty} +cy^2 = d\) and pure powers in recurrence sequences, Math. Scand., 52, 24-36 (1983) ·Zbl 0491.10016 ·doi:10.7146/math.scand.a-11990 |
[25] | Stewart, CL, On the representation of an integer in two different bases, J. Reine Angew. Math., 319, 63-72 (1980) ·Zbl 0426.10008 |