Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e.g.functions,functorial, etc.). Otherwise the search isexact.
"Topological group"Phrases (multi-words) should be set in"straight quotation marks".
au: Bourbaki & ti: AlgebraSearch forauthor andtitle. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator | allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so: Eur* J* Mat* Soc* cc: 14Search for publications in a particularsource with aMathematics SubjectClassificationcode (cc) in14.
"Partial diff* eq*" ! ellipticThenot-operator! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set to books; alternatively:j forjournal articles,a forbook articles.
py: 2000-2015 cc: (94A | 11T)Numberranges are accepted. Terms can be grouped within(parentheses).
la: chineseFind documents in a givenlanguage.ISO 639-1 language codes can also be used.

Fields

anyanywhere
aninternal document identifier
auauthor, editor
aiinternal author identifier
tititle
lalanguage
sosource
abreview, abstract
pypublication year
rvreviewer
ccMSC code
utuncontrolled term
dtdocument type (j: journal article;b: book;a: book article)

Operators

a& blogic and
a| blogic or
!ablogic not
abc*right wildcard
"ab c"phrase
(ab c)parentheses

See also ourGeneral Help.

Linear combinations of prime powers in \(X\)-coordinates of Pell equations.(English)Zbl 1485.11027

Let \( d>1 \) be a positive squarefree integer. It is well-known that the Pell equation \[X^2-dY^2=\pm 1,\tag{1}\] has infinitely may positive integer solutions \( (X,Y) \), of the form \[X+Y\sqrt{d}=X_k+Y_k\sqrt{d}=(X_1+Y_1\sqrt{d})^{k},\tag{2}\] for some positive integer \( k \), where \( (X_1,Y_1) \) is the smallest positive integer solution of (1). Furthermore, by conjugating the relation in (2), one obtains the Binet formula for the binary recurrent sequence \( \{X_k\}_{k\ge 1} \) given by\begin{align*}X_k=\dfrac{(X_1+Y_1\sqrt{d})^{k}+(X_1-Y_1\sqrt{d})^{k}}{2}.\end{align*}
In the paper under review, the authors investigate the following problem. For \( s \) a positive integer, they determine for which positive squarefree integers \( d>1 \) the sequence \( \{X_\ell\}_{\ell\ge 1} \) has at least two different terms that can be represented as \[X_{\ell}=c_1p_1^{n_1}+\cdots+c_sp_s^{n_s}, \tag{3}\] where \( \epsilon \in (0,1) \), \( c_1, \ldots, c_s\in \mathbb{Z}^{+};~ p_1, \ldots, p_s \) are primes with \( p_1\le \cdots \le p_s \); \( n_1, \ldots, n_s\ge 0 \); and \( (1-\epsilon)n_s => \max_{1\le i\le s}n_i> \max_{1\le i\le s-1} n_i \). In other words, if \( H_{d,\epsilon} \) is the set of solutions \( (\ell, n_1, \ldots, n_s) \) of (3), the authors are interested in determining the values of \( d \) for which there exist two solutions \( (\ell_1, a_1, \ldots, a_s) \), \( (\ell_2, b_1, \ldots, b_s) \) both in \( H_{d,\epsilon} \), with \( \ell_1\ne \ell_2 \).
The authors prove two interesting results: thefiniteness result, which is the main result, in which they effectively bound the variables and hence the number of solutions to (3); and thenumerical result, in which they effectively solve a particular case of (3), that is, \( X_\ell=2^{n_1}+3^{n_2}\), with \( n_1 \le n_2 \). Thier research is motivated by the result ofC. Bertók et al. in [Int. J. Number Theory 13, No. 2, 261–271 (2017;Zbl 1409.11009)].
To prove their results, the authors use a clever combination of techniques in number theory, the properties of the solutions of Pell equations, the theory of nonzero linear forms in logarithms of algebraic numbers ‘á la Baker’, and the reduction techniques involving the theory of continued fractions. All computations are done with the help of a computer program inMathematica.

MSC:

11B39 Fibonacci and Lucas numbers and polynomials and generalizations
11D45 Counting solutions of Diophantine equations
11J86 Linear forms in logarithms; Baker’s method

Citations:

Zbl 1409.11009

Cite

References:

[1]Baker, A.; Davenport, H., The equations \(3x^2-2 =y^2\) and \(8x^2-7=z^2\), Q. J. Math. Oxf. Ser. (2), 20, 129-137 (1969) ·Zbl 0177.06802 ·doi:10.1093/qmath/20.1.129
[2]Bertók, C.; Hajdu, L.; Pink, I.; Rábai, Z., Linear combinations of prime powers in binary recurrence sequences, Int. J. Number Theory, 13, 2, 261-271 (2017) ·Zbl 1409.11009 ·doi:10.1142/S1793042117500166
[3]Bir, K.; Luca, F.; Togbé, A., On the \(x\)-coordinates of Pell equations which are Fibonacci numbers, Colloq. Math., 149, 75-85 (2018) ·Zbl 1420.11037
[4]Bravo, EF; Gómez, CA; Luca, F., \(x\)-Coordinates of Pell equations as sums of two tribonacci numbers, Period. Math. Hung., 77, 175-190 (2019) ·Zbl 1424.11036 ·doi:10.1007/s10998-017-0226-8
[5]Bugeaud, Y.; Mignotte, M.; Siksek, S., Classical and modular approaches to exponential Diophantine equations. I. Fibonacci and Lucas perfect powers, Ann. Math. (2), 163, 969-1018 (2006) ·Zbl 1113.11021 ·doi:10.4007/annals.2006.163.969
[6]Cohen, H., Number Theory. Volume II: Analytic and Modern Tools (2007), New York: Springer, New York ·Zbl 1119.11002
[7]Ddamulira, M., Luca, F.: On the \(x\)-coordinates of Pell equations which are \(k\)-generalized Fibonacci numbers. J. Number Theory (2018). 10.1016/j.jnt.2019.07.006 ·Zbl 1447.11025
[8]Díaz Alvarado, S., Luca, F.: Fibonacci numbers which are sums of two repdigits. In: Proceedings of the XIVth International Conference on Fibonacci Numbers and Their Applications, Sociedad Matemática Mexicana, Aportaciones Matemáticas, Investigación, vol. 20, pp. 97-108 (2011) ·Zbl 1287.11021
[9]Dossavi-Yovo, A.; Luca, F.; Togbé, A., On the \(x\)-coordinates of Pell equations which are rep-digits, Publ. Math. Debr., 88, 381-399 (2016) ·Zbl 1389.11076 ·doi:10.5486/PMD.2016.7378
[10]Dujella, A.; Pethő, A., A generalization of a theorem of Baker and Davenport, Q. J. Math. Oxf., 49, 291-306 (1998) ·Zbl 0911.11018 ·doi:10.1093/qmathj/49.3.291
[11]Faye, B.; Luca, F., On \(x\)-coordinates of Pell equations which are repdigits, Fibonacci Q., 56, 52-62 (2018) ·Zbl 1459.11082
[12]Gómez, C.A., Luca, F.: Zeckendorf representations with at most two terms to \(x\)-coordinates of Pell equations. Sci. China Math. (2019). 10.1007/s11425-017-9283-6 ·Zbl 1455.11031
[13]Luca, F., Distinct digits in base \(b\) expansions of linear recurrence sequences, Quaest. Math., 23, 389-404 (2000) ·Zbl 1030.11004 ·doi:10.2989/16073600009485986
[14]Luca, F.; Stănică, P., Fibonacci numbers of the form \(p^a \pm p^b\), Congr. Numer., 194, 177-183 (2009) ·Zbl 1273.11030
[15]Luca, F.; Szalay, L., Fibonacci numbers of the form \(p^a \pm p^b + 1\), Fibonacci Q., 45, 98-103 (2007) ·Zbl 1228.11021
[16]Luca, F.; Togbé, A., On the \(x\)-coordinates of Pell equations which are Fibonacci numbers, Math. Scand., 122, 18-30 (2018) ·Zbl 1416.11027 ·doi:10.7146/math.scand.a-97271
[17]Luca, F., Montejano, A., Szalay, L., Togbé, A.: On the \(x\)-coordinates of Pell equations which are Tribonacci numbers. Acta Arith. (2019) ·Zbl 1420.11061
[18]Marques, D.; Togbé, A., Fibonacci and Lucas numbers of the form \(2^a + 3^b + 5^c\), Proc. Jpn. Acad. Ser. A, 89, 47-50 (2013) ·Zbl 1362.11018 ·doi:10.3792/pjaa.89.47
[19]Matveev, EM, An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers, Izv. Math., 64, 1217-1269 (2000) ·Zbl 1013.11043 ·doi:10.1070/IM2000v064n06ABEH000314
[20]Meher, NK; Rout, SS, Linear combinations of prime powers in sums of terms of binary recurrence sequences, Lith. Math. J., 57, 4, 506-520 (2017) ·Zbl 1420.11031 ·doi:10.1007/s10986-017-9374-z
[21]Pethő, A., Perfect powers in second order linear recurrences, J. Number Theory, 15, 5-13 (1982) ·Zbl 0488.10009 ·doi:10.1016/0022-314X(82)90079-8
[22]Pethő, A., The Pell sequence contains only trivial perfect powers. Proceedings of Sets Graphs and Numbers, Coll. Math. Soc. János Bolyai, 60, 561-568 (1992) ·Zbl 0790.11021
[23]Pethő, A.; Tichy, RF, \(S\)-unit equations, linear recurrences and digit expansions, Publ. Math. Debr., 42, 145-154 (1993) ·Zbl 0792.11006
[24]Shorey, TN; Stewart, CL, On the Diophantine equation \(ax^{2t} + bx^{ty} +cy^2 = d\) and pure powers in recurrence sequences, Math. Scand., 52, 24-36 (1983) ·Zbl 0491.10016 ·doi:10.7146/math.scand.a-11990
[25]Stewart, CL, On the representation of an integer in two different bases, J. Reine Angew. Math., 319, 63-72 (1980) ·Zbl 0426.10008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp