Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

On heights of characters of finite groups.(English)Zbl 1481.20029

Summary: In this paper we first state a conjecture on the lower bound of the maximal height of characters in a \(p\)-block of a finite group. Then we show that our conjecture holds for all blocks of covering groups of a sporadic simple group, for all blocks of a quasi-simple group \(G\) with \(G / Z(G)\) isomorphic to \(A_6, A_7\) or a simple group of Lie type with an exceptional covering group, for all blocks of a symmetric group, as well as for all blocks of finite general linear or unitary groups. For the proof of the case with symmetric groups, it relates to an open question of Olsson on the existence of \(t\)-core partitions, where \(t \geq 3\) is an integer. As a byproduct, our investigation on heights of characters of the symmetric groups and of the general linear or unitary groups also gives evidence for the Isaacs-Moretó-Navarro-Tiep Conjecture, claiming that the number of distinct irreducible character degrees of a Sylow \(p\)-subgroup \(P\) of an arbitrary finite group \(G\) is at most one more than the number of irreducible character degrees of \(G\) that are multiples of \(p\).

MSC:

20C20 Modular representations and characters
20C33 Representations of finite groups of Lie type

Cite

References:

[1]Brauer, R., Number theoretical investigations on groups of finite order, (Proceedings of the International Symposium on Algebraic Number Theory. Proceedings of the International Symposium on Algebraic Number Theory, Tokyo and Nikko (1955) (1956), Science Council of Japan: Science Council of Japan Tokyo), 55-62 ·Zbl 0073.01403
[2]Broué, M., Les ℓ-blocs des groupes \(\operatorname{GL}(n, q)\) et \(\operatorname{U}(n, q^2)\) et leur structures locales, Astérisque, 640, 159-188 (1986)
[3]Brunat, O.; Malle, G., Characters of positive height in blocks of finite quasi-simple groups, Int. Math. Res. Not., 17, 7763-7786 (2015) ·Zbl 1339.20007
[4]Carter, R.; Fong, P., The Sylow 2-subgroups of the finite classical groups, J. Algebra, 1, 139-151 (1964) ·Zbl 0123.02901
[5]Conway, J. H.; Curtis, R. T.; Norton, S. P.; Parker, R. A.; Wilson, R. A., Atlas of Finite Groups (1984), Oxford University Press: Oxford University Press London
[6]Dagger, S. W., On the blocks of the Chevalley groups, J. Lond. Math. Soc., 3, 21-29 (1971) ·Zbl 0213.30502
[7]Eaton, C. W.; Moretó, A., Extending Brauer’s height zero conjecture to blocks with nonabelian defect groups, Int. Math. Res. Not., 20, 5581-5601 (2014) ·Zbl 1348.20009
[8]Enguehard, M., Isométries parfaites entre blocs de groupes symétriques, Astérisque, 181-182, 157-171 (1990) ·Zbl 0745.20012
[9]Enguehard, M., Towards a Jordan decomposition of blocks of finite reductive groups ·Zbl 1194.20048
[10]Feng, Z.; Li, C.; Liu, Y.; Malle, G.; Zhang, J., Robinson’s conjecture on heights of characters, Compos. Math., 155, 1098-1117 (2019) ·Zbl 1483.20010
[11]Feng, Z.; Li, C.; Liu, Y.; Malle, G.; Zhang, J., Robinson’s conjecture for classical groups, J. Group Theory, 22, 555-578 (2019) ·Zbl 1468.20020
[12]Feng, Z.; Liu, Y.; Zhang, J., Towards the Eaton-Moretó conjecture on the minimal height of characters, Commun. Algebra, 47, 5007-5019 (2019) ·Zbl 1468.20014
[13]Fong, P.; Srinivasan, B., The blocks of finite general linear and unitary groups, Invent. Math., 69, 109-153 (1982) ·Zbl 0507.20007
[14]Granville, A.; Ono, K., Defect zero p-blocks for finite simple groups, Trans. Am. Math. Soc., 348, 331-347 (1996) ·Zbl 0855.20007
[15]Green, J. A., The characters of the finite general linear groups, Trans. Am. Math. Soc., 80, 402-447 (1955) ·Zbl 0068.25605
[16]Huppert, B., A remark on the character-degrees of some p-groups, Arch. Math., 59, 313-318 (1992) ·Zbl 0819.20008
[17]Huppert, B., Character Theory of Finite Groups (1998), Walter de Gruyter & Co.: Walter de Gruyter & Co. Berlin ·Zbl 0932.20007
[18]Isaacs, I. M.; Moretó, A.; Navarro, G.; Tiep, P. H., Groups with just one character degree divisible by a given prime, Trans. Am. Math. Soc., 361, 6521-6547 (2009) ·Zbl 1203.20005
[19]James, G.; Kerber, A., The Representation Theory of the Symmetric Group (1981), Addison-Wesley Publishing Co.: Addison-Wesley Publishing Co. Reading, Mass. ·Zbl 0491.20010
[20]Kessar, R.; Malle, G., Quasi-isolated blocks and Brauer’s height zero conjecture, Ann. Math. (2), 178, 321-384 (2013) ·Zbl 1317.20006
[21]Kessar, R.; Malle, G., Brauer’s height zero conjecture for quasi-simple groups, J. Algebra, 475, 43-60 (2017) ·Zbl 1437.20006
[22]Ku, C., Dade’s Ordinary Conjecture for the Finite Unitary Groups in the Defining Characteristic (1999), California Institute of Technology, Ph.D. Thesis
[23]Lusztig, G.; Srinivasan, B., The characters of the finite unitary groups, J. Algebra, 49, 167-171 (1977) ·Zbl 0384.20008
[24]Michler, G. O.; Olsson, J. B., Character correspondences in finite general linear, unitary and symmetric groups, Math. Z., 184, 203-233 (1983) ·Zbl 0505.20009
[25]Malle, G.; Testerman, D., Linear Algebraic Groups and Finite Groups of Lie Type, Cambridge Studies in Advanced Mathematics, vol. 133 (2011), Cambridge University Press: Cambridge University Press Cambridge ·Zbl 1256.20045
[26]Nathanson, M. B., Additive Number Theory: The Classical Bases (1996), Springer: Springer New York ·Zbl 0859.11002
[27]Navarro, G.; Späth, B., On Brauer’s height zero conjecture, J. Eur. Math. Soc., 16, 695-747 (2014) ·Zbl 1353.20006
[28]Olsson, J. B., Combinatorics and Representations of Finite Groups, Vorlesungen aus dem Facherbeich Mathematik der Universität Essen, vol. 20 (1993), Universität Essen: Universität Essen Essen ·Zbl 0796.05095
[29]Olsson, J. B.; Uno, K., Dade’s conjecture for general linear groups in the defining characteristic, Proc. Lond. Math. Soc., 72, 359-384 (1996) ·Zbl 0862.20009
[30]Robinson, G., Local structure, vertices and Alperin’s conjecture, Proc. Lond. Math. Soc. (3), 72, 312-330 (1996) ·Zbl 0854.20010
[31]GAP - Groups, Algorithms, and Programming, version 4.9.3 (2018)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp