[1] | Brauer, R., Number theoretical investigations on groups of finite order, (Proceedings of the International Symposium on Algebraic Number Theory. Proceedings of the International Symposium on Algebraic Number Theory, Tokyo and Nikko (1955) (1956), Science Council of Japan: Science Council of Japan Tokyo), 55-62 ·Zbl 0073.01403 |
[2] | Broué, M., Les ℓ-blocs des groupes \(\operatorname{GL}(n, q)\) et \(\operatorname{U}(n, q^2)\) et leur structures locales, Astérisque, 640, 159-188 (1986) |
[3] | Brunat, O.; Malle, G., Characters of positive height in blocks of finite quasi-simple groups, Int. Math. Res. Not., 17, 7763-7786 (2015) ·Zbl 1339.20007 |
[4] | Carter, R.; Fong, P., The Sylow 2-subgroups of the finite classical groups, J. Algebra, 1, 139-151 (1964) ·Zbl 0123.02901 |
[5] | Conway, J. H.; Curtis, R. T.; Norton, S. P.; Parker, R. A.; Wilson, R. A., Atlas of Finite Groups (1984), Oxford University Press: Oxford University Press London |
[6] | Dagger, S. W., On the blocks of the Chevalley groups, J. Lond. Math. Soc., 3, 21-29 (1971) ·Zbl 0213.30502 |
[7] | Eaton, C. W.; Moretó, A., Extending Brauer’s height zero conjecture to blocks with nonabelian defect groups, Int. Math. Res. Not., 20, 5581-5601 (2014) ·Zbl 1348.20009 |
[8] | Enguehard, M., Isométries parfaites entre blocs de groupes symétriques, Astérisque, 181-182, 157-171 (1990) ·Zbl 0745.20012 |
[9] | Enguehard, M., Towards a Jordan decomposition of blocks of finite reductive groups ·Zbl 1194.20048 |
[10] | Feng, Z.; Li, C.; Liu, Y.; Malle, G.; Zhang, J., Robinson’s conjecture on heights of characters, Compos. Math., 155, 1098-1117 (2019) ·Zbl 1483.20010 |
[11] | Feng, Z.; Li, C.; Liu, Y.; Malle, G.; Zhang, J., Robinson’s conjecture for classical groups, J. Group Theory, 22, 555-578 (2019) ·Zbl 1468.20020 |
[12] | Feng, Z.; Liu, Y.; Zhang, J., Towards the Eaton-Moretó conjecture on the minimal height of characters, Commun. Algebra, 47, 5007-5019 (2019) ·Zbl 1468.20014 |
[13] | Fong, P.; Srinivasan, B., The blocks of finite general linear and unitary groups, Invent. Math., 69, 109-153 (1982) ·Zbl 0507.20007 |
[14] | Granville, A.; Ono, K., Defect zero p-blocks for finite simple groups, Trans. Am. Math. Soc., 348, 331-347 (1996) ·Zbl 0855.20007 |
[15] | Green, J. A., The characters of the finite general linear groups, Trans. Am. Math. Soc., 80, 402-447 (1955) ·Zbl 0068.25605 |
[16] | Huppert, B., A remark on the character-degrees of some p-groups, Arch. Math., 59, 313-318 (1992) ·Zbl 0819.20008 |
[17] | Huppert, B., Character Theory of Finite Groups (1998), Walter de Gruyter & Co.: Walter de Gruyter & Co. Berlin ·Zbl 0932.20007 |
[18] | Isaacs, I. M.; Moretó, A.; Navarro, G.; Tiep, P. H., Groups with just one character degree divisible by a given prime, Trans. Am. Math. Soc., 361, 6521-6547 (2009) ·Zbl 1203.20005 |
[19] | James, G.; Kerber, A., The Representation Theory of the Symmetric Group (1981), Addison-Wesley Publishing Co.: Addison-Wesley Publishing Co. Reading, Mass. ·Zbl 0491.20010 |
[20] | Kessar, R.; Malle, G., Quasi-isolated blocks and Brauer’s height zero conjecture, Ann. Math. (2), 178, 321-384 (2013) ·Zbl 1317.20006 |
[21] | Kessar, R.; Malle, G., Brauer’s height zero conjecture for quasi-simple groups, J. Algebra, 475, 43-60 (2017) ·Zbl 1437.20006 |
[22] | Ku, C., Dade’s Ordinary Conjecture for the Finite Unitary Groups in the Defining Characteristic (1999), California Institute of Technology, Ph.D. Thesis |
[23] | Lusztig, G.; Srinivasan, B., The characters of the finite unitary groups, J. Algebra, 49, 167-171 (1977) ·Zbl 0384.20008 |
[24] | Michler, G. O.; Olsson, J. B., Character correspondences in finite general linear, unitary and symmetric groups, Math. Z., 184, 203-233 (1983) ·Zbl 0505.20009 |
[25] | Malle, G.; Testerman, D., Linear Algebraic Groups and Finite Groups of Lie Type, Cambridge Studies in Advanced Mathematics, vol. 133 (2011), Cambridge University Press: Cambridge University Press Cambridge ·Zbl 1256.20045 |
[26] | Nathanson, M. B., Additive Number Theory: The Classical Bases (1996), Springer: Springer New York ·Zbl 0859.11002 |
[27] | Navarro, G.; Späth, B., On Brauer’s height zero conjecture, J. Eur. Math. Soc., 16, 695-747 (2014) ·Zbl 1353.20006 |
[28] | Olsson, J. B., Combinatorics and Representations of Finite Groups, Vorlesungen aus dem Facherbeich Mathematik der Universität Essen, vol. 20 (1993), Universität Essen: Universität Essen Essen ·Zbl 0796.05095 |
[29] | Olsson, J. B.; Uno, K., Dade’s conjecture for general linear groups in the defining characteristic, Proc. Lond. Math. Soc., 72, 359-384 (1996) ·Zbl 0862.20009 |
[30] | Robinson, G., Local structure, vertices and Alperin’s conjecture, Proc. Lond. Math. Soc. (3), 72, 312-330 (1996) ·Zbl 0854.20010 |
[31] | GAP - Groups, Algorithms, and Programming, version 4.9.3 (2018) |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.