Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

The spread of a finite group.(English)Zbl 1480.20081

Let \(G\) be a finite group, then
(1) thespread \(s(G)\) of \(G\) is the largest integer \(k\) such that for any nontrivial elements \(x_1, \ldots, x_k \in G\), there exists \(y \in G\) with \(G = \langle x_i, y \rangle\) for all \(i\);
(2) theuniform spread \(u(G)\) of \(G\) is the largest integer \(k\) such that there is a conjugacy class \(\mathcal{C}\) of \(G\) with the property that for any nontrivial elements \(x_1, \ldots, x_k \in G\), there exists \(y \in \mathcal{C}\) with \(G = \langle x_i, y \rangle\) for all \(i\).
A group \(G\) is \(\frac{3}{2}\)-generated if every nontrivial element belongs to a generating pair, which is equivalent to the condition \(s(G) \geq 1\).
The notion of spread was first introduced in the 1970s byJ. L. Brenner andJ. Wiegold [Mich. Math. J. 22, 53–64 (1975;Zbl 0294.20035)], where results on the spread of soluble groups and certain families of simple groups are established. The more restrictive definition of uniform spread was formally introduced much more recently byM. Quick [Int. J. Algebra Comput. 16, No. 3, 493–503 (2006;Zbl 1103.20066)].
The main result proved in the paper under review is Theorem 1: Let \(G\) be a finite group. Then \(s(G) \geq 2\) if and only if every proper quotient of \(G\) is cyclic. As a corollary, it is shown that there is no finite group \(G\) such that \(s(G)=1\).
Theorem 3 provides a classification of finite groups \(G\) with \(u(G) \leq 1\). In particular (i) \(u(G)=0\) if and only if \(G\) has a noncyclic proper quotient, or \(G \simeq \mathrm{Sym}_6\) or \(C_p \times C_p\) for a prime \(p\) and (ii) \(u(G)=1\) if and only if \(G\) has a unique minimal normal subgroup \(N=T_{1} \times \ldots \times T_{k}\) with \(T_{i} \simeq \mathrm{Alt}_{6}\) where \(k \geq 2\), \(G/N\) is cyclic and \(N_{G}(T_{i})/C_{G}(T_{i})\simeq \mathrm{Sym}_{6}\) for all \(i\). As an immediate corollary, the authors deduce that if \(G\) is a finite group of even order all of whose proper quotients are cyclic, then every involution in \(G\) belongs to a generating pair. Also, they conclude that \(G=\mathrm{Sym}_6\) is the only finite almost simple group such that \(u(G)<2\), in particular \(u(\mathrm{Sym}_6)=0\) and \(s(\mathrm{Sym}_6)=2\).
Thegenerating graph \(\Gamma(G)\) of a finite group \(G\) is the graph whose vertices are the elements of \(G\) and in which two vertices are connected by an edge if and only if they generate \(G\). The authors of this impressive paper establish a dichotomy for generating graphs: \(\Gamma(G)\) either has isolated vertices or is connected and has diameter at most 2.

MSC:

20F05 Generators, relations, and presentations of groups
20E32 Simple groups
20E28 Maximal subgroups
20G41 Exceptional groups
20P05 Probabilistic methods in group theory
20D06 Simple groups: alternating groups and groups of Lie type

Cite

References:

[1]Aschbacher, M.; Guralnick, R., Some applications of the first cohomology group, J. Algebra. Journal of Algebra, 90, 446-460 (1984) ·Zbl 0554.20017 ·doi:10.1016/0021-8693(84)90183-2
[2]Aschbacher, M.; Scott, L., Maximal subgroups of finite groups, J. Algebra. Journal of Algebra, 92, 44-80 (1985) ·Zbl 0549.20011 ·doi:10.1016/0021-8693(85)90145-0
[3]Ballantyne, John; Bates, Chris; Rowley, Peter, The maximal subgroups of {\(E_7(2)\)}, LMS J. Comput. Math.. LMS Journal of Computation and Mathematics, 18, 323-371 (2015) ·Zbl 1317.20010 ·doi:10.1112/S1461157015000030
[4]Binder, G. {\relax Ya}, The bases of the symmetric group, Izv. Vys\v{s}. U\v{c}ebn. Zaved. Matematika. Izvestija Vys\v{s}ih U\v{c}ebnyh Zavedeni\u{\i} Matematika, 78, 19-25 (1968)
[5]Binder, G. {\relax Ya}, The two-element bases of the symmetric group, Izv. Vys\v{s}. U\v{c}ebn. Zaved. Matematika. Izvestija Vys\v{s}ih U\v{c}ebnyh Zavedeni\u{\i} Matematika, 92, 9-11 (1970)
[6]Binder, G. {\relax Ya}, Some complete sets of complementary elements of the symmetric and the alternating group of {\(n\){\rm -th}} degree, Mat. Zametki. Akademiya Nauk SSSR. Matematicheskie Zametki, 7, 173-180 (1970)
[7]Bosma, Wieb; Cannon, John; Playoust, Catherine, The {M}agma algebra system. {I}. {T}he user language, J. Symbolic Comput., 24, 235-265 (1997) ·Zbl 0898.68039 ·doi:10.1006/jsco.1996.0125
[8]Bray, John N.; Holt, Derek F.; Roney-Dougal, Colva M., The Maximal Subgroups of the Low-Dimensional Finite Classical Groups, London Math. Soc. Lecture Note Ser., 407, xiv+438 pp. (2013) ·Zbl 1303.20053 ·doi:10.1017/CBO9781139192576
[9]Brenner, J. L.; Wiegold, James, Two-generator groups. {I}, Michigan Math. J.. Michigan Mathematical Journal, 22, 53-64 (1975) ·Zbl 0294.20035 ·doi:10.1307/mmj/1029001421
[10]Breuer, Thomas; Guralnick, Robert M.; Kantor, William M., Probabilistic generation of finite simple groups. {II}, J. Algebra. Journal of Algebra, 320, 443-494 (2008) ·Zbl 1181.20013 ·doi:10.1016/j.jalgebra.2007.10.028
[11]Burness, Timothy C., Fixed point ratios in actions of finite classical groups. {IV}, J. Algebra. Journal of Algebra, 314, 749-788 (2007) ·Zbl 1133.20004 ·doi:10.1016/j.jalgebra.2007.01.012
[12]Burness, Timothy C., On base sizes for almost simple primitive groups, J. Algebra. Journal of Algebra, 516, 38-74 (2018) ·Zbl 1427.20001 ·doi:10.1016/j.jalgebra.2018.08.032
[13]Burness, Timothy C., Simple groups, generation and probabilistic methods. Groups {S}t {A}ndrews 2017 in {B}irmingham, London Math. Soc. Lecture Note Ser., 455, 200-229 (2019) ·Zbl 1514.20053 ·doi:10.1017/9781108692397.009
[14]Burness, Timothy C.; Guest, Simon, On the uniform spread of almost simple linear groups, Nagoya Math. J.. Nagoya Mathematical Journal, 209, 35-109 (2013) ·Zbl 1271.20012 ·doi:10.1017/S0027763000010680
[15]Burness, Timothy C.; Harper, Scott, Finite groups, 2-generation and the uniform domination number, Israel J. Math.. Israel Journal of Mathematics, 239, 271-367 (2020) ·Zbl 1464.20011 ·doi:10.1007/s11856-020-2050-8
[16]Burness, Timothy C.; Liebeck, Martin W.; Shalev, Aner, Base sizes for simple groups and a conjecture of {C}ameron, Proc. Lond. Math. Soc. (3). Proceedings of the London Mathematical Society. Third Series, 98, 116-162 (2009) ·Zbl 1179.20002 ·doi:10.1112/plms/pdn024
[17]Burness, Timothy C.; Thomas, Adam R., On the involution fixity of exceptional groups of {L}ie type, Internat. J. Algebra Comput.. International Journal of Algebra and Computation, 28, 411-466 (2018) ·Zbl 1498.20127 ·doi:10.1142/S0218196718500200
[18]Celler, Frank; Leedham-Green, Charles R.; Murray, Scott H.; Niemeyer, Alice C.; O’Brien, E. A., Generating random elements of a finite group, Comm. Algebra. Communications in Algebra, 23, 4931-4948 (1995) ·Zbl 0836.20094 ·doi:10.1080/00927879508825509
[19]Chang, Bomshik, The conjugate classes of {C}hevalley groups of type {\((G\sb{2})\)}, J. Algebra. Journal of Algebra, 9, 190-211 (1968) ·Zbl 0285.20043 ·doi:10.1016/0021-8693(68)90020-3
[20]Cohen, Arjeh M.; Liebeck, Martin W.; Saxl, Jan; Seitz, Gary M., The local maximal subgroups of exceptional groups of {L}ie type, finite and algebraic, Proc. London Math. Soc. (3). Proceedings of the London Mathematical Society. Third Series, 64, 21-48 (1992) ·Zbl 0706.20037 ·doi:10.1112/plms/s3-64.1.21
[21]Conway, J. H.; Curtis, R. T.; Norton, S. P.; Parker, R. A.; Wilson, R. A., {ATLAS} of Finite Groups, xxxiv+252 pp. (1985) ·Zbl 0568.20001
[22]Cooperstein, Bruce N., Maximal subgroups of {\(G\sb{2}(2\sp{n})\)}, J. Algebra. Journal of Algebra, 70, 23-36 (1981) ·Zbl 0459.20007 ·doi:10.1016/0021-8693(81)90241-6
[23]Craven, David A., Alternating subgroups of exceptional groups of {L}ie type, Proc. Lond. Math. Soc. (3). Proceedings of the London Mathematical Society. Third Series, 115, 449-501 (2017) ·Zbl 1428.20018 ·doi:10.1112/plms.12043
[24]Craven, David A., Maximal {\({\rm PSL}_2\)} subgroups of exceptional groups of {L}ie type (2021)
[25]Craven, David A., On medium-rank {L}ie primitive and maximal subgroups of exceptional groups of {L}ie type (2022)
[26]Deriziotis, D. I.; Michler, G. O., Character table and blocks of finite simple triality groups {\(^3D_4(q)\)}, Trans. Amer. Math. Soc.. Transactions of the American Mathematical Society, 303, 39-70 (1987) ·Zbl 0628.20014 ·doi:10.2307/2000778
[27]Donoven, Casey; Harper, Scott, Infinite {\( \frac 32\)}-generated groups, Bull. Lond. Math. Soc.. Bulletin of the London Mathematical Society, 52, 657-673 (2020) ·Zbl 1472.20069 ·doi:10.1112/blms.12356
[28]Enomoto, Hikoe, The conjugacy classes of {C}hevalley groups of type {\((G\sb{2})\)} over finite fields of characteristic {\(2\)} or {\(3\)}, J. Fac. Sci. Univ. Tokyo Sect. I. Journal of the Faculty of Science. Univ. of Tokyo. Section I, 16, 497-512 (1969) ·Zbl 0242.20049
[29]Evans, Martin J., {\(T\)}-systems of certain finite simple groups, Math. Proc. Cambridge Philos. Soc.. Mathematical Proceedings of the Cambridge Philosophical Society, 113, 9-22 (1993) ·Zbl 0781.20021 ·doi:10.1017/S0305004100075745
[30]Fleischmann, Peter; Janiszczak, Ingo, The semisimple conjugacy classes and the generic class number of the finite simple groups of {L}ie type {\(E_8\)}, Comm. Algebra. Communications in Algebra, 22, 2221-2303 (1994) ·Zbl 0816.20015 ·doi:10.1080/00927879408824962
[31]Fried, Michael D.; Guralnick, Robert; Saxl, Jan, Schur covers and {C}arlitz’s conjecture, Israel J. Math.. Israel Journal of Mathematics, 82, 157-225 (1993) ·Zbl 0855.11063 ·doi:10.1007/BF02808112
[32]Gorenstein, Daniel; Lyons, Richard; Solomon, Ronald, The Classification of the Finite Simple Groups. {N}umber 3., Math. Surveys Monogr., 40, xvi+419 pp. (1998) ·Zbl 0890.20012 ·doi:10.1090/surv/040.3
[33]Guba, V. S., A finitely generated simple group with free {\(2\)}-generated subgroups, Sibirsk. Mat. Zh.. Akademiya Nauk SSSR. Sibirskoe Otdelenie. Sibirski\u{\i} Matematicheski\u{\i} Zhurnal, 27, 50-67 (1986) ·Zbl 0616.20013 ·doi:10.1007/BF00969195
[34]Guest, Simon; Morris, Joy; Praeger, Cheryl E.; Spiga, Pablo, On the maximum orders of elements of finite almost simple groups and primitive permutation groups, Trans. Amer. Math. Soc.. Transactions of the American Mathematical Society, 367, 7665-7694 (2015) ·Zbl 1330.20002 ·doi:10.1090/S0002-9947-2015-06293-X
[35]Guralnick, Robert M.; Kantor, William M., Probabilistic generation of finite simple groups. special issue in honor of {H}elmut {W}ielandt, J. Algebra. Journal of Algebra, 234, 743-792 (2000) ·Zbl 0973.20012 ·doi:10.1006/jabr.2000.8357
[36]Guralnick, Robert M.; Shalev, Aner, On the spread of finite simple groups, Combinatorica. Combinatorica. An International Journal on Combinatorics and the Theory of Computing, 23, 73-87 (2003) ·Zbl 1027.20004 ·doi:10.1007/s00493-003-0014-3
[37]Harper, Scott, On the uniform spread of almost simple symplectic and orthogonal groups, J. Algebra. Journal of Algebra, 490, 330-371 (2017) ·Zbl 1427.20023 ·doi:10.1016/j.jalgebra.2017.07.008
[38]Harper, Scott, The spread of almost simple classical groups ·Zbl 1427.20023
[39]Kantor, William M.; Seress, \'{A}kos, Large element orders and the characteristic of {L}ie-type simple groups, J. Algebra. Journal of Algebra, 322, 802-832 (2009) ·Zbl 1180.20009 ·doi:10.1016/j.jalgebra.2009.05.004
[40]Kawanaka, Noriaki, On the irreducible characters of the finite unitary groups, J. Math. Soc. Japan. Journal of the Mathematical Society of Japan, 29, 425-450 (1977) ·Zbl 0353.20031 ·doi:10.2969/jmsj/02930425
[41]Kleidman, Peter B., The maximal subgroups of the {S}teinberg triality groups {\(^3D_4(q)\)} and of their automorphism groups, J. Algebra. Journal of Algebra, 115, 182-199 (1988) ·Zbl 0642.20013 ·doi:10.1016/0021-8693(88)90290-6
[42]Kleidman, Peter B., The maximal subgroups of the {C}hevalley groups {\(G_2(q)\)} with {\(q\)} odd, the {R}ee groups {\(^2G_2(q)\)}, and their automorphism groups, J. Algebra. Journal of Algebra, 117, 30-71 (1988) ·Zbl 0651.20020 ·doi:10.1016/0021-8693(88)90239-6
[43]Kleidman, Peter B.; Liebeck, Martin, The Subgroup Structure of the Finite Classical Groups, London Math. Soc. Lecture Note Ser., 129, x+303 pp. (1990) ·Zbl 0697.20004 ·doi:10.1017/CBO9780511629235
[44]Kleidman, Peter B.; Wilson, Robert A., The maximal subgroups of {\(E_6(2)\)} and {\({\rm Aut}(E_6(2))\)}, Proc. London Math. Soc. (3). Proceedings of the London Mathematical Society. Third Series, 60, 266-294 (1990) ·Zbl 0715.20008 ·doi:10.1112/plms/s3-60.2.266
[45]Lawther, R., Sublattices generated by root differences, J. Algebra. Journal of Algebra, 412, 255-263 (2014) ·Zbl 1344.17011 ·doi:10.1016/j.jalgebra.2014.04.018
[46]Lawther, R.; Liebeck, Martin W.; Seitz, Gary M., Fixed point spaces in actions of exceptional algebraic groups, Pacific J. Math.. Pacific Journal of Mathematics, 205, 339-391 (2002) ·Zbl 1058.20039 ·doi:10.2140/pjm.2002.205.339
[47]Lawther, Ross; Liebeck, Martin W.; Seitz, Gary M., Fixed point ratios in actions of finite exceptional groups of {L}ie type, Pacific J. Math.. Pacific Journal of Mathematics, 205, 393-464 (2002) ·Zbl 1058.20001 ·doi:10.2140/pjm.2002.205.393
[48]Liebeck, Martin W.; Saxl, Jan; Seitz, Gary M., Subgroups of maximal rank in finite exceptional groups of {L}ie type, Proc. London Math. Soc. (3). Proceedings of the London Mathematical Society. Third Series, 65, 297-325 (1992) ·Zbl 0776.20012 ·doi:10.1112/plms/s3-65.2.297
[49]Liebeck, Martin W.; Seitz, Gary M., Maximal subgroups of exceptional groups of {L}ie type, finite and algebraic, Geom. Dedicata. Geometriae Dedicata, 35, 353-387 (1990) ·Zbl 0721.20030 ·doi:10.1007/BF00147353
[50]Liebeck, Martin W.; Seitz, Gary M., On finite subgroups of exceptional algebraic groups, J. Reine Angew. Math.. Journal f\"{u}r die Reine und Angewandte Mathematik. [Crelle’s Journal], 515, 25-72 (1999) ·Zbl 0980.20034 ·doi:10.1515/crll.1999.078
[51]Liebeck, Martin W.; Seitz, Gary M., A survey of maximal subgroups of exceptional groups of {L}ie type. Groups, Combinatorics & Geometry, 139-146 (2003) ·Zbl 1032.20010 ·doi:10.1142/9789812564481_0008
[52]Liebeck, Martin W.; Shalev, Aner, Classical groups, probabilistic methods, and the {\((2,3)\)}-generation problem, Ann. of Math. (2). Annals of Mathematics. Second Series, 144, 77-125 (1996) ·Zbl 0865.20020 ·doi:10.2307/2118584
[53]Litterick, Alastair J., On non-generic finite subgroups of exceptional algebraic groups, Mem. Amer. Math. Soc.. Memoirs of the American Mathematical Society, 253, v+156 pp. (2018) ·Zbl 1435.20001 ·doi:10.1090/memo/1207
[54]available on author’s webpage, Centralisers and numbers of semisimple classes in exceptional groups of {L}ie type
[55]Lucchini, Andrea; Menegazzo, Federico, Generators for finite groups with a unique minimal normal subgroup, Rend. Sem. Mat. Univ. Padova. Rendiconti del Seminario Matematico della Universit\`a di Padova. The Mathematical Journal of the Univ. of Padova, 98, 173-191 (1997) ·Zbl 0895.20027
[56]Malle, Gunter, The maximal subgroups of {\({}^2F_4(q^2)\)}, J. Algebra. Journal of Algebra, 139, 52-69 (1991) ·Zbl 0725.20014 ·doi:10.1016/0021-8693(91)90283-E
[57]Norton, S. P.; Wilson, R. A., The maximal subgroups of {\(F_4(2)\)} and its automorphism group, Comm. Algebra. Communications in Algebra, 17, 2809-2824 (1989) ·Zbl 0692.20010 ·doi:10.1080/00927878908823877
[58]Pak, Igor, What do we know about the product replacement algorithm?. Groups and Computation, {III}, Ohio State Univ. Math. Res. Inst. Publ., 8, 301-347 (2001) ·Zbl 0986.68172 ·doi:10.1515/9783110872743.301
[59]Piccard, Sophie, Sur les bases du groupe sym\'{e}trique et du groupe alternant, Math. Ann.. Mathematische Annalen, 116, 752-767 (1939) ·Zbl 0022.01002 ·doi:10.1007/BF01597389
[60]Shinoda, Kenichi, The conjugacy classes of {C}hevalley groups of type {\((F\sb{4})\)} over finite fields of characteristic {\(2\)}, J. Fac. Sci. Univ. Tokyo Sect. I A Math., 21, 133-159 (1974) ·Zbl 0306.20013
[61]Shinoda, Kenichi, The conjugacy classes of the finite {R}ee groups of type {\((F\sb{4})\)}, J. Fac. Sci. Univ. Tokyo Sect. I A Math., 22, 1-15 (1975) ·Zbl 0306.20014
[62]Shintani, Takuro, Two remarks on irreducible characters of finite general linear groups, J. Math. Soc. Japan. Journal of the Mathematical Society of Japan, 28, 396-414 (1976) ·Zbl 0323.20041 ·doi:10.2969/jmsj/02820396
[63]Shoji, Toshiaki, The conjugacy classes of {C}hevalley groups of type {\((F\sb{4})\)} over finite fields of characteristic {\(p\not=2\)}, J. Fac. Sci. Univ. Tokyo Sect. IA Math.. Journal of the Faculty of Science. Univ. of Tokyo. Section IA. Mathematics, 21, 1-17 (1974) ·Zbl 0279.20038
[64]Stein, Alexander, {\(1\frac12\)}-generation of finite simple groups, Beitr\"{a}ge Algebra Geom.. Beitr\"{a}ge zur Algebra und Geometrie. Contributions to Algebra and Geometry, 39, 349-358 (1998) ·Zbl 0924.20027
[65]Steinberg, Robert, Generators for simple groups, Canadian J. Math.. Canadian Journal of Mathematics. Journal Canadien de Math\'{e}matiques, 14, 277-283 (1962) ·Zbl 0103.26204 ·doi:10.4153/CJM-1962-018-0
[66]Suzuki, Michio, On a class of doubly transitive groups, Ann. of Math. (2). Annals of Mathematics. Second Series, 75, 105-145 (1962) ·Zbl 0106.24702 ·doi:10.2307/1970423
[67]Ward, Harold N., On {R}ee’s series of simple groups, Trans. Amer. Math. Soc.. Transactions of the American Mathematical Society, 121, 62-89 (1966) ·Zbl 0139.24902 ·doi:10.2307/1994333
[68]Weigel, Thomas S., Generation of exceptional groups of {L}ie-type, Geom. Dedicata. Geometriae Dedicata, 41, 63-87 (1992) ·Zbl 0758.20001 ·doi:10.1007/BF00181543
[69]Wilson, Robert A., The Finite Simple Groups, Grad. Texts in Math., 251, xvi+298 pp. (2009) ·Zbl 1203.20012 ·doi:10.1007/978-1-84800-988-2
[70]Wilson, Robert A., Maximal subgroups of \({}^2{E}_6(2)\) and its automorphism groups (2022)
[71]Zsigmondy, K., Zur {T}heorie der {P}otenzreste, Monatsh. Math. Phys.. Monatshefte f\"{u}r Mathematik und Physik, 3, 265-284 (1892) ·JFM 24.0176.02 ·doi:10.1007/BF01692444
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp