[1] | Acerbi, E.; Mingione, G., Gradient estimates for the \(p(x)\)-Laplacean system, J. Reine Angew. Math. (Crelles J.), 584, 117-148 (2005) ·Zbl 1093.76003 |
[2] | Acerbi, E.; Mingione, G., Gradient estimates for a class of parabolic systems, Duke Math. J., 136, 285-320 (2007) ·Zbl 1113.35105 |
[3] | Ancona, A., Elliptic operators, conormal derivatives and positive parts of functions. With an appendix by H. Brezis, J. Funct. Anal., 257, 2124-2158 (2009) ·Zbl 1173.58007 |
[5] | Bildhauer, M.; Fuchs, M., \(C^{1, \alpha}\)-solutions to non-autonomous anisotropic variational problems, Calc. Var. Partial Differential Equations, 24, 309-340 (2005) ·Zbl 1101.49029 |
[6] | Brezis, H., On a conjecture of J. Serrin, Rend. Lincei (IX) Mat. Appl., 19, 335-338 (2008) ·Zbl 1197.35079 |
[7] | Brezis, H.; Mironescu, P., Gagliardo-Nirenberg, composition and products in fractional Sobolev spaces, J. Evol. Equ., 1, 387-404 (2001) ·Zbl 1023.46031 |
[8] | Byun, S. S., Hessian estimates in Orlicz spaces for fourth-order parabolic systems in nonsmooth domains, J. Differential Equations, 246, 3518-3534 (2009) ·Zbl 1170.35027 |
[9] | Byun, S. S.; Cho, Y.; Wang, L., Calderón-Zygmund theory for nonlinear elliptic problems with irregular obstacles, J. Funct. Anal., 263, 3117-3143 (2012) ·Zbl 1259.35094 |
[10] | Caffarelli, L.; Peral, I., On \(W^{1, p}\) estimates for elliptic equations in divergence form, Comm. Pure Appl. Math., 51, 1-21 (1998) ·Zbl 0906.35030 |
[11] | Calderón, A. P.; Zygmund, A., On the existence of certain singular integrals, Acta Math., 88, 85-139 (1952) ·Zbl 0047.10201 |
[12] | Calderón, A. P.; Zygmund, A., On singular integrals, Amer. J. Math., 78, 289-309 (1956) ·Zbl 0072.11501 |
[13] | Carozza, M.; Kristensen, J.; Passarelli di Napoli, A., Higher differentiability of minimizers of convex variational integrals, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28, 395-411 (2011) ·Zbl 1245.49052 |
[14] | Choe, H. J., Interior behaviour of minimizers for certain functionals with nonstandard growth, Nonlinear Anal., 19, 933-945 (1992) ·Zbl 0786.35040 |
[15] | Colombo, M.; Mingione, G., Regularity for double phase variational problems, Arch. Ration. Mech. Anal., 215, 443-496 (2015) ·Zbl 1322.49065 |
[16] | Colombo, M.; Mingione, G., Bounded minimisers of double phase variational integrals, Arch. Ration. Mech. Anal., 218, 219-273 (2015) ·Zbl 1325.49042 |
[17] | Cupini, G.; Leonetti, F.; Mascolo, E., Existence of weak solutions for elliptic systems with \(p, q\)-growth conditions, Ann. Acad. Sci. Fenn. Ser. A I Math., 40, 645-658 (2015) ·Zbl 1326.35135 |
[18] | Cupini, G.; Marcellini, P.; Mascolo, E., Existence and regularity for elliptic equations under \(p, q\)-growth, Adv. Differential Equations, 19, 693-724 (2014) ·Zbl 1305.35041 |
[19] | Di Nezza, E.; Palatucci, G.; Valdinoci, E., Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math., 136, 521-573 (2012) ·Zbl 1252.46023 |
[20] | DiBenedetto, E.; Manfredi, J. J., On the higher integrability of the gradient of weak solutions of certain degenerate elliptic systems, Amer. J. Math., 115, 1107-1134 (1993) ·Zbl 0805.35037 |
[21] | Esposito, L.; Leonetti, F.; Mingione, G., Regularity for minimizers of functionals with \(p-q\) growth, NoDEA Nonlinear Differential Equations Appl., 6, 133-148 (1999) ·Zbl 0928.35044 |
[22] | Esposito, L.; Leonetti, F.; Mingione, G., Sharp regularity for functionals with \((p, q)\) growth, J. Differential Equations, 204, 5-55 (2004) ·Zbl 1072.49024 |
[23] | Fonseca, I.; Malý, J.; Mingione, G., Scalar minimizers with fractal singular sets, Arch. Ration. Mech. Anal., 172, 295-307 (2004) ·Zbl 1049.49015 |
[24] | Giusti, E., Direct Methods in the Calculus of Variations (2003), World Scientific Publishing Co., Inc.: World Scientific Publishing Co., Inc. River Edge, NJ ·Zbl 1028.49001 |
[25] | Gutiérrez, C. E.; Peral, I., A harmonic analysis theorem and applications to homogenization, Indiana Univ. Math. J., 50, 1651-1674 (2001) ·Zbl 1022.43002 |
[26] | Iwaniec, T., On \(L^p\)-integrability in PDEs and quasiregular mappings for large exponents, Ann. Acad. Sci. Fenn. Ser. A I Math., 7, 301-322 (1982) ·Zbl 0505.30011 |
[27] | Iwaniec, T., Projections onto gradient fields and \(L^p\)-estimates for degenerated elliptic operators, Studia Math., 75, 293-312 (1983) ·Zbl 0552.35034 |
[28] | Iwaniec, T.; Sbordone, C., Weak minima of variational integrals, J. Reine Angew. Math. (Crelle J.), 454, 143-161 (1994) ·Zbl 0802.35016 |
[29] | Kinnunen, J.; Zhou, S., A local estimate for nonlinear equations with discontinuous coefficients, Comm. Partial Differential Equations, 24, 2043-2068 (1999) ·Zbl 0941.35026 |
[30] | Kristensen, J.; Melcher, C., Regularity in oscillatory nonlinear elliptic systems, Math. Z., 260, 813-847 (2008) ·Zbl 1158.35037 |
[31] | Kristensen, J.; Mingione, G., The singular set of minima of integral functionals, Arch. Ration. Mech. Anal., 180, 331-398 (2006) ·Zbl 1116.49010 |
[32] | Kristensen, J.; Mingione, G., Boundary regularity in variational problems, Arch. Ration. Mech. Anal., 198, 369-455 (2010) ·Zbl 1228.49043 |
[34] | Leonetti, F.; Siepe, F., Maximum principle for vector valued minimizers, J. Convex Anal., 12, 267-278 (2005) ·Zbl 1098.49033 |
[35] | Lieberman, G. M., Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal., 12, 1203-1219 (1988) ·Zbl 0675.35042 |
[36] | Lieberman, G. M., The natural generalization of the natural conditions of Ladyzhenskaya and Ural’tseva for elliptic equations, Comm. Partial Differential Equations, 16, 311-361 (1991) ·Zbl 0742.35028 |
[37] | Lieberman, G. M., Gradient estimates for a new class of degenerate elliptic and parabolic equations, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4), 21, 497-522 (1994) ·Zbl 0839.35018 |
[38] | Manfredi, J. J., Regularity of the gradient for a class of nonlinear possibly degenerate elliptic equations (1986), University of Washington: University of Washington St. Louis, PhD thesis |
[39] | Manfredi, J. J., Regularity for minima of functionals with \(p\)-growth, J. Differential Equations, 76, 203-212 (1988) ·Zbl 0674.35008 |
[40] | Marcellini, P., Regularity of minimizers of integrals of the calculus of variations with non standard growth conditions, Arch. Ration. Mech. Anal., 105, 267-284 (1989) ·Zbl 0667.49032 |
[41] | Marcellini, P., Regularity and existence of solutions of elliptic equations with \(p, q\)-growth conditions, J. Differential Equations, 90, 1-30 (1991) ·Zbl 0724.35043 |
[42] | Marcellini, P., Everywhere regularity for a class of elliptic systems without growth conditions, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4), 23, 1-25 (1996) ·Zbl 0922.35031 |
[43] | Mascolo, E.; Papi, G., Harnack inequality for minimizers of integral functionals with general growth conditions, NoDEA Nonlinear Differential Equations Appl., 3, 231-244 (1996) ·Zbl 0855.49027 |
[44] | Mingione, G., Regularity of minima: an invitation to the dark side of the calculus of variations, Appl. Math., 51, 355-425 (2006) ·Zbl 1164.49324 |
[45] | Mingione, G., The Calderón-Zygmund theory for elliptic problems with measure data, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 6, 195-261 (2007) ·Zbl 1178.35168 |
[46] | Mingione, G., Nonlinear aspects of Calderón-Zygmund theory, Jahresber. Dtsch. Math.-Ver., 112, 159-191 (2010) ·Zbl 1218.35104 |
[47] | Schmidt, T., Regularity of relaxed minimizers of quasiconvex variational integrals with \((p, q)\)-growth, Arch. Ration. Mech. Anal., 193, 311-337 (2009) ·Zbl 1173.49032 |
[48] | Serrin, J., Pathological solutions of elliptic differential equations, Ann. Sc. Norm. Super. Pisa (III), 18, 385-387 (1964) ·Zbl 0142.37601 |
[49] | Uhlenbeck, K., Regularity for a class of non-linear elliptic systems, Acta Math., 138, 219-240 (1977) ·Zbl 0372.35030 |
[50] | Ural’tseva, N. N., Degenerate quasilinear elliptic systems, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 7, 184-222 (1968) ·Zbl 0199.42502 |
[51] | Ural’tseva, N. N.; Urdaletova, A. B., The boundedness of the gradients of generalized solutions of degenerate quasilinear non-uniformly elliptic equations, Vestn. Leningrad Univ. Math.. Vestn. Leningrad Univ. Math., Vestn. Leningrad Univ. Math., 16, 263-270 (1984), (in Russian); English translation: ·Zbl 0569.35029 |
[52] | Verde, A., Calderón-Zygmund estimates for systems of \(φ\)-growth, J. Convex Anal., 18, 67-84 (2011) ·Zbl 1207.49047 |
[53] | Zhikov, V. V., Averaging of functionals of the calculus of variations and elasticity theory, Izv. Akad. Nauk SSSR Ser. Mat., 50, 675-710 (1986) |
[54] | Zhikov, V. V., On Lavrentiev’s phenomenon, Russ. J. Math. Phys., 3, 249-269 (1995) ·Zbl 0910.49020 |
[55] | Zhikov, V. V., On some variational problems, Russ. J. Math. Phys., 5, 105-116 (1997) ·Zbl 0917.49006 |
[56] | Zhikov, V. V.; Kozlov, S. M.; Oleinik, O. A., Homogenization of Differential Operators and Integral Functionals (1994), Springer-Verlag: Springer-Verlag Berlin ·Zbl 0838.35001 |