[1] | A. I. Bondal and M. M. Kapranov, Framed triangulated categories. {\it Mat.j Sb. }181 (1990), no. 5, 669-683. In Russian. English translation, {\it Math. USSR-Sb. }70 (1991), no. 1, 93-107MR 1055981 ·Zbl 0719.18005 |
[2] | V. Drinfeld, DG quotients of DG categories. {\it J. Algebra }272 (2004), no. 2, 643-691. MR 2028075 Zbl 1064.18009 Decategorification of Ozsváth and Szabó’s bordered theory205 ·Zbl 1064.18009 |
[3] | A. P. Ellis, I. Petkova, and V. Vértesi, Quantum gl.1j1/ and tangle Floer homology. Preprint, 2015.arXiv:1510.03483[math.GT] ·Zbl 1441.57013 |
[4] | M. Kashiwara and P. Schapira, {\it Categories and sheaves. }Grundlehren der Mathematischen Wissenschaften, 332. Springer-Verlag, Berlin etc., 2006.MR 2182076 Zbl 1118.18001 ·Zbl 1118.18001 |
[5] | L. H. Kauffman, {\it Formal knot theory. }Mathematical Notes, 30. Princeton University Press, Princeton, N.J., 1983.MR 712133 Zbl 0537.57002 ·Zbl 0537.57002 |
[6] | L. H. Kauffman and H. Saleur, Free fermions and the Alexander-Conway polynomial. {\it Comm. Math. Phys. }141 (1991), no. 2, 293-327.MR 1133269 Zbl 0751.57004 ·Zbl 0751.57004 |
[7] | B. Keller, Deriving DG categories. {\it Ann. Sci. École Norm. Sup. }(4) 27 (1994), no. 1, 63-102.MR 1258406 Zbl 0799.18007 ·Zbl 0799.18007 |
[8] | B. Keller, On differential graded categories. In M. Sanz-Solé, J. Soria, J. L. Varona and J. Verdera (eds.), {\it International Congress of Mathematicians. }Vol. II. Invited lectures. Proceedings of the congress held in Madrid, August 22-30, 2006, 151-190 MR 2275593 Zbl 1140.18008 ·Zbl 1140.18008 |
[9] | M. Khovanov and P. Seidel, Quivers, Floer cohomology, and braid group actions. {\it J. Amer. Math. Soc. }15 (2002), no. 1, 203-271.MR 1862802 Zbl 1035.53122 ·Zbl 1035.53122 |
[10] | M. Kontsevich, Homological algebra of mirror symmetry. In S. D. Chatterji (ed.), Proceedings of the International Congress of Mathematicians. Vol. I. Held in Züricho August 3-11, 1994. Birkhäuser Verlag, Basel, 1995, 120-139.MR 1403918 Zbl 0846.53021 ·Zbl 0846.53021 |
[11] | R. Lipshitz, P. S. Ozsváth, and D. P. Thurston, Bordered Heegaard Floer homology {\it Mem. Amer. Math. Soc. }254 (2018), no. 1216.MR 3827056 ·Zbl 1422.57080 |
[12] | R. Lipshitz, P. S. Ozsváth, and D. P. Thurston, A faithful linear-categorical action of the mapping class group of a surface with boundary. {\it J. Eur. Math. Soc. }15 (2013), no. 4, 1279-1307.MR 3055762 Zbl 1280.57016 ·Zbl 1280.57016 |
[13] | R. Lipshitz, P. S. Ozsváth, and D. P. Thurston, Bimodules in bordered Heegaard Floer homology. {\it Geom. Topol. }19 (2015), no. 2, 525-724.MR 3336273 Zbl 1315.57036 ·Zbl 1315.57036 |
[14] | A. Manion, Khovanov-Seidel quiver algebras and Ozsváth-Szabó’s bordered theory. {\it J. Algebra }488 (2017), 110-144.MR 3680914 Zbl 06768972 ·Zbl 1409.16010 |
[15] | T. Ohtsuki, {\it Quantum invariants. }A study of knots, 3-manifolds, and their sets. Series on Knots and Everything, 29. World Scientific, River Edge, N.J., 2002.MR 1881401 Zbl 0991.57001 ·Zbl 0991.57001 |
[16] | P. Ozsváth and Z. Szabó, Algebras with matchings and knot Floer homology. In preparation. ·Zbl 1052.57012 |
[17] | P. Ozsváth and Z. Szabó, Heegaard Floer homology and alternating knots. {\it Geom.} {\it Topol. }7 (2003), no. 2,j225-254.MR 1988285 Zbl 1130.57303 ·Zbl 1130.57303 |
[18] | P. Ozsváth and Z. Szabó, Kauffman states, bordered algebras, and a bigraded knot invariant. {\it Adv. Math. }328 (2018), 1088-1198.MR 3771149 Zbl 06850703 206A. Manion ·Zbl 1417.57015 |
[19] | I. Petkova, The decategorification of bordered Heegaard Floer homology. {\it J. Symplectic Geom. }16 (2018), no. 1, 227-277.MR 3798330 Zbl 1391.57007 ·Zbl 1391.57007 |
[20] | I. Petkova and V. Vértesi, Combinatorial tangle Floer homology. {\it Geom. Topol. }20 (2016), no. 6, 3219-3332.MR 3590353 Zbl 1366.57005 ·Zbl 1366.57005 |
[21] | L. Rozansky and H. Saleur, Quantum field theory for the multi-variable Alexander– Conway polynomial. {\it Nuclear Phys. B }376 (1992), no. 3, 461-509.MR 1170953 |
[22] | A. Sartori, The Alexander polynomial as quantum invariant of links. {\it Ark. Mat. }53 (2015), no. 1, 177-202.MR 3319619 Zbl 1329.57021 ·Zbl 1329.57021 |
[23] | A. Sartori, Categorification of tensor powers of the vector representation of Uq.gl.1j1//. {\it Selecta Math. (N.S.) }22 (2016), no. 2, 669-734.MR 3477333 Zbl 06568885 ·Zbl 1407.17012 |
[24] | P. Seidel, Fukaya categories and Picard-Lefschetz theory. Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich, 2008. MR 2441780 Zbl 1159.53001 ·Zbl 1159.53001 |
[25] | P. Seidel, Homological mirror symmetry for the genus two curve. {\it J. Algebraic Geom.} 20 (2011), no. 4, 727-769.MR 2819674 Zbl 1226.14028 ·Zbl 1226.14028 |
[26] | P. Seidel, Homological mirror symmetry for the quartic surface. {\it Mem. Amer. Math.} {\it Soc. }236 (2015), no. 1116, vi+129.MR 3364859 Zbl 1334.53091 ·Zbl 1334.53091 |
[27] | R. W. Thomason, The classification of triangulated subcategories. {\it Compositio Math.} 105 (1997), no. 1, 1-27.MR 1436741 Zbl 0873.18003 ·Zbl 0873.18003 |
[28] | Y. Tian, A categorification of UT.sl.1j1// and its tensor product representations. {\it Geom. Topol. }18 (2014), no. 3, 1635-1717.MR 3228460 Zbl 1305.18053 ·Zbl 1305.18053 |
[29] | O. Ya. Viro, Quantum relatives of the Alexander polynomial {\it Algebra i Analiz }18 (2006), no. 3, 63-157. In Russian. English translation, {\it St. Petersburg Math. J. }18 (2007), no. 3, 391-457.MR 2255851 Zbl 1149.57024 ·Zbl 1149.57024 |
[30] | H. Zhang, The quantum general linear supergroup, canonical bases and Kazhdan– Lusztig polynomials. {\it Sci. China Ser. A }52 (2009), no. 3, 401-416.MR 2491760 Zbl 1229.17022 ·Zbl 1229.17022 |
[31] | C. Zibrowius, {\it On a Heegaard Floer theory for tangles. }Ph.D. thesis. Cambridge University, Cambridge, 2017.https://www.repository.cam.ac.uk/handle/1810/263367 |
[32] | C. Zibrowius, Kauffman states and Heegaard diagrams for tangles. Preprint, 2016. arXiv:1601.04915 ·Zbl 1443.57008 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.