Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

On the decategorification of Ozsváth and Szabó’s bordered theory for knot Floer homology.(English)Zbl 1478.57014

This paper shows a relation between the decategorification of Ozsváth-Szabó’s theory to Viro’s quantum relative \(\mathcal{A}^1\) of the Reshetikhin-Turaev function about the \(q\)-deformed universal enveloping superalgebra \(\mathcal{U}_a(\mathfrak{gl}(1\vert 1))\).
Ozsváth-Szabó’s theory can be summarized as follows. Suppose crossings, maximum points and minimum points of a knot projection are at different heights. One can use horizontal lines to separate the knot projection into elementary pieces, each of which contains exactly one of the crossings and max/min points. A horizontal line meets the knot projection at \(n\) oriented points. Ozsváth and Szabó define a differential graded algebra \(\mathcal{B}(n, \mathcal{S})\), where \(\mathcal{S}\) describes the orientation of points. To each elementary piece, they define a finitely generated \(DA\) bimodule over the algebras \(\mathcal{B}(n, \mathcal{S})\). Ozsváth and Szabó prove that the homology obtained by taking box tensor products of these bimodules over all elementary pieces coincides with knot Floer homology.
Viro’s quantum relative \(\mathcal{A}^1\) is defined for the same objects. For each elementary piece \(W\), there is a natural choice of \(1\)-palette \((B_W, M_W)\). The functor \(\mathcal{A}^1\) sends the bottom and top boundaries to two free \(B_W\)-modules, and sends \(W\) to a \(B_W\)-linear map between them.
To consider the decategorification of Ozsváth-Szabó’s theory, the author defines two subalgebras \(\mathcal{C}_r(n, \mathcal{S})\) and \(\mathcal{C}_l(n, \mathcal{S})\) of \(\mathcal{B}(n, \mathcal{S})\). He considers two types of triangulated categories of \(\mathcal{C}_r(n, \mathcal{S})\) and \(\mathcal{C}_l(n, \mathcal{S})\). The main result is as follows. Let \(Y\) be the set of \(n\) oriented points on a horizontal line. There are identifications of the Grothendieck groups (which are regarded as the decategorifications) of the triangulated categories mentioned above and the free module defined by \(\mathcal{A}^1\). The identifications are given by making a special choice of bases. For a tangle \(\Gamma\) that is not the terminal minimum, the decategorification of Ozsváth-Szabó’s \(DA\) module agrees with the map defined by \(\mathcal{A}^1\) under the identifications above (a slight change of \(\Gamma\) is needed).

MSC:

57K18 Homology theories in knot theory (Khovanov, Heegaard-Floer, etc.)
57K16 Finite-type and quantum invariants, topological quantum field theories (TQFT)
17B37 Quantum groups (quantized enveloping algebras) and related deformations

Cite

References:

[1]A. I. Bondal and M. M. Kapranov, Framed triangulated categories. {\it Mat.j Sb. }181 (1990), no. 5, 669-683. In Russian. English translation, {\it Math. USSR-Sb. }70 (1991), no. 1, 93-107MR 1055981 ·Zbl 0719.18005
[2]V. Drinfeld, DG quotients of DG categories. {\it J. Algebra }272 (2004), no. 2, 643-691. MR 2028075 Zbl 1064.18009 Decategorification of Ozsváth and Szabó’s bordered theory205 ·Zbl 1064.18009
[3]A. P. Ellis, I. Petkova, and V. Vértesi, Quantum gl.1j1/ and tangle Floer homology. Preprint, 2015.arXiv:1510.03483[math.GT] ·Zbl 1441.57013
[4]M. Kashiwara and P. Schapira, {\it Categories and sheaves. }Grundlehren der Mathematischen Wissenschaften, 332. Springer-Verlag, Berlin etc., 2006.MR 2182076 Zbl 1118.18001 ·Zbl 1118.18001
[5]L. H. Kauffman, {\it Formal knot theory. }Mathematical Notes, 30. Princeton University Press, Princeton, N.J., 1983.MR 712133 Zbl 0537.57002 ·Zbl 0537.57002
[6]L. H. Kauffman and H. Saleur, Free fermions and the Alexander-Conway polynomial. {\it Comm. Math. Phys. }141 (1991), no. 2, 293-327.MR 1133269 Zbl 0751.57004 ·Zbl 0751.57004
[7]B. Keller, Deriving DG categories. {\it Ann. Sci. École Norm. Sup. }(4) 27 (1994), no. 1, 63-102.MR 1258406 Zbl 0799.18007 ·Zbl 0799.18007
[8]B. Keller, On differential graded categories. In M. Sanz-Solé, J. Soria, J. L. Varona and J. Verdera (eds.), {\it International Congress of Mathematicians. }Vol. II. Invited lectures. Proceedings of the congress held in Madrid, August 22-30, 2006, 151-190 MR 2275593 Zbl 1140.18008 ·Zbl 1140.18008
[9]M. Khovanov and P. Seidel, Quivers, Floer cohomology, and braid group actions. {\it J. Amer. Math. Soc. }15 (2002), no. 1, 203-271.MR 1862802 Zbl 1035.53122 ·Zbl 1035.53122
[10]M. Kontsevich, Homological algebra of mirror symmetry. In S. D. Chatterji (ed.), Proceedings of the International Congress of Mathematicians. Vol. I. Held in Züricho August 3-11, 1994. Birkhäuser Verlag, Basel, 1995, 120-139.MR 1403918 Zbl 0846.53021 ·Zbl 0846.53021
[11]R. Lipshitz, P. S. Ozsváth, and D. P. Thurston, Bordered Heegaard Floer homology {\it Mem. Amer. Math. Soc. }254 (2018), no. 1216.MR 3827056 ·Zbl 1422.57080
[12]R. Lipshitz, P. S. Ozsváth, and D. P. Thurston, A faithful linear-categorical action of the mapping class group of a surface with boundary. {\it J. Eur. Math. Soc. }15 (2013), no. 4, 1279-1307.MR 3055762 Zbl 1280.57016 ·Zbl 1280.57016
[13]R. Lipshitz, P. S. Ozsváth, and D. P. Thurston, Bimodules in bordered Heegaard Floer homology. {\it Geom. Topol. }19 (2015), no. 2, 525-724.MR 3336273 Zbl 1315.57036 ·Zbl 1315.57036
[14]A. Manion, Khovanov-Seidel quiver algebras and Ozsváth-Szabó’s bordered theory. {\it J. Algebra }488 (2017), 110-144.MR 3680914 Zbl 06768972 ·Zbl 1409.16010
[15]T. Ohtsuki, {\it Quantum invariants. }A study of knots, 3-manifolds, and their sets. Series on Knots and Everything, 29. World Scientific, River Edge, N.J., 2002.MR 1881401 Zbl 0991.57001 ·Zbl 0991.57001
[16]P. Ozsváth and Z. Szabó, Algebras with matchings and knot Floer homology. In preparation. ·Zbl 1052.57012
[17]P. Ozsváth and Z. Szabó, Heegaard Floer homology and alternating knots. {\it Geom.} {\it Topol. }7 (2003), no. 2,j225-254.MR 1988285 Zbl 1130.57303 ·Zbl 1130.57303
[18]P. Ozsváth and Z. Szabó, Kauffman states, bordered algebras, and a bigraded knot invariant. {\it Adv. Math. }328 (2018), 1088-1198.MR 3771149 Zbl 06850703 206A. Manion ·Zbl 1417.57015
[19]I. Petkova, The decategorification of bordered Heegaard Floer homology. {\it J. Symplectic Geom. }16 (2018), no. 1, 227-277.MR 3798330 Zbl 1391.57007 ·Zbl 1391.57007
[20]I. Petkova and V. Vértesi, Combinatorial tangle Floer homology. {\it Geom. Topol. }20 (2016), no. 6, 3219-3332.MR 3590353 Zbl 1366.57005 ·Zbl 1366.57005
[21]L. Rozansky and H. Saleur, Quantum field theory for the multi-variable Alexander– Conway polynomial. {\it Nuclear Phys. B }376 (1992), no. 3, 461-509.MR 1170953
[22]A. Sartori, The Alexander polynomial as quantum invariant of links. {\it Ark. Mat. }53 (2015), no. 1, 177-202.MR 3319619 Zbl 1329.57021 ·Zbl 1329.57021
[23]A. Sartori, Categorification of tensor powers of the vector representation of Uq.gl.1j1//. {\it Selecta Math. (N.S.) }22 (2016), no. 2, 669-734.MR 3477333 Zbl 06568885 ·Zbl 1407.17012
[24]P. Seidel, Fukaya categories and Picard-Lefschetz theory. Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich, 2008. MR 2441780 Zbl 1159.53001 ·Zbl 1159.53001
[25]P. Seidel, Homological mirror symmetry for the genus two curve. {\it J. Algebraic Geom.} 20 (2011), no. 4, 727-769.MR 2819674 Zbl 1226.14028 ·Zbl 1226.14028
[26]P. Seidel, Homological mirror symmetry for the quartic surface. {\it Mem. Amer. Math.} {\it Soc. }236 (2015), no. 1116, vi+129.MR 3364859 Zbl 1334.53091 ·Zbl 1334.53091
[27]R. W. Thomason, The classification of triangulated subcategories. {\it Compositio Math.} 105 (1997), no. 1, 1-27.MR 1436741 Zbl 0873.18003 ·Zbl 0873.18003
[28]Y. Tian, A categorification of UT.sl.1j1// and its tensor product representations. {\it Geom. Topol. }18 (2014), no. 3, 1635-1717.MR 3228460 Zbl 1305.18053 ·Zbl 1305.18053
[29]O. Ya. Viro, Quantum relatives of the Alexander polynomial {\it Algebra i Analiz }18 (2006), no. 3, 63-157. In Russian. English translation, {\it St. Petersburg Math. J. }18 (2007), no. 3, 391-457.MR 2255851 Zbl 1149.57024 ·Zbl 1149.57024
[30]H. Zhang, The quantum general linear supergroup, canonical bases and Kazhdan– Lusztig polynomials. {\it Sci. China Ser. A }52 (2009), no. 3, 401-416.MR 2491760 Zbl 1229.17022 ·Zbl 1229.17022
[31]C. Zibrowius, {\it On a Heegaard Floer theory for tangles. }Ph.D. thesis. Cambridge University, Cambridge, 2017.https://www.repository.cam.ac.uk/handle/1810/263367
[32]C. Zibrowius, Kauffman states and Heegaard diagrams for tangles. Preprint, 2016. arXiv:1601.04915 ·Zbl 1443.57008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp