Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Complex hyperkähler structures defined by Donaldson-Thomas invariants.(English)Zbl 1475.14108

The notion of a Joyce structure, introduced byT. Bridgeland [“Geometry from Donaldson-Thomas invariants”, Preprint,arXiv:1912.06504], is a combination of geometric structures which are expected to exist on the space of stability conditions on a CY3 triangulated category, encoded by the Donaldson-Thomas invariants. The name originates in the work ofD. Joyce [Geom. Topol. 11, 667–725 (2007;Zbl 1141.14023)]. The original definition in loc.cit.is rather complicated and given in terms of non-geometric viewpoint. The paper under this review gives a more geometric reformulation of a slightly restricted class, called a strong Joyce structure on a complex manifold \(M\) (Definition 3.3). It consists of a period structure on \(M\), introduced in §3.1, and a complex hyperkähler structure on the holomorphic tangent bundle \(X=T M\) satisfying certain compatibility conditions. Associated to it is a locally-defined holomorphic function \(W\) on \(X\) satisfying a system of differential equations (see (1) in §1 and (13), (14) in §3.2), which is nothing but the Joyce function appearing in the original definition. Moreover, the paper discusses a relation between a quantum deformation of the above-mentioned differential equations and the Moyal quantization of Plebański’s heavenly equation. It also includes a brief but valuable review of the original definition of a Joyce structure.

MSC:

14N35 Gromov-Witten invariants, quantum cohomology, Gopakumar-Vafa invariants, Donaldson-Thomas invariants (algebro-geometric aspects)
53C26 Hyper-Kähler and quaternionic Kähler geometry, “special” geometry
14J42 Holomorphic symplectic varieties, hyper-Kähler varieties

Citations:

Zbl 1141.14023

Cite

References:

[1]Balser, W.; Jurkat, WB; Lutz, DA, Birkhoff invariants and Stokes’ multipliers for meromorphic linear differential equations, J. Math. Anal. Appl., 71, 1, 48-94 (1979) ·Zbl 0415.34008 ·doi:10.1016/0022-247X(79)90217-8
[2]Boyer, C.; Plebański, J., An infinite hierarchy of conservation laws and nonlinear superposition principles for self-dual Einstein spaces, J. Math. Phys., 26, 229 (1985) ·Zbl 0555.53044 ·doi:10.1063/1.526652
[3]Bridgeland, T., Stability conditions on triangulated categories, Ann. Math., 166, 31-345 (2007) ·Zbl 1137.18008 ·doi:10.4007/annals.2007.166.317
[4]Bridgeland, T.; Toledano Laredo, V., Stability conditions and Stokes factors, Invent. Math., 187, 1, 61-98 (2012) ·Zbl 1239.14008 ·doi:10.1007/s00222-011-0329-4
[5]Bridgeland, T., Riemann-Hilbert problems from Donaldson-Thomas theory, Invent. Math., 216, 69-124 (2019) ·Zbl 1423.14309 ·doi:10.1007/s00222-018-0843-8
[6]Bridgeland, T.: Geometry from Donaldson-Thomas invariants, preprint arXiv:1912.06504 ·Zbl 1451.14159
[7]Bridgeland, T., Barbieri, A., Stoppa, J.: A quantized Riemann-Hilbert problem in Donaldson-Thomas theory, preprint arXiv:1905.00748 (to appear IMRN)
[8]Bridgeland, T.: On the monodromy of the deformed cubic oscillator, with an appendix by D. Masoero, preprint arXiv:2006.10648
[9]Bridgeland, T.: A complexification of the Hitchin system, in preparation
[10]Dunajski, M.: Null Kähler geometry and isomonodromic deformations, preprint arXiv:2010.11216
[11]Dunajski, M.; Tod, KP, Einstein-Weyl structures from hyper-Kähler Metrics with conformal Killing vectors, Diff. Geom. Appl., 14, 39-55 (2001) ·Zbl 0997.53036 ·doi:10.1016/S0926-2245(00)00037-1
[12]Fairlie, DB; Zachos, C., Infinite-dimensional algebras, sine brackets, and \(SU(\infty )\), Phys. Lett. B, 224, 1-2, 101-107 (1989) ·Zbl 0689.17019 ·doi:10.1016/0370-2693(89)91057-5
[13]Gaiotto, D.; Moore, G.; Neitzke, A., Four-dimensional wall-crossing via three-dimensional field theory, Comm. Math. Phys., 299, 1, 163-224 (2010) ·Zbl 1225.81135 ·doi:10.1007/s00220-010-1071-2
[14]Gaiotto, D.; Moore, G.; Neitzke, A., Wall-crossing, Hitchin systems, and the WKB approximation, Adv. Math., 234, 239-403 (2013) ·Zbl 1358.81150 ·doi:10.1016/j.aim.2012.09.027
[15]Gindikin, SG, A construction of hyper-Kähler metrics, Funct. Anal. Appl., 20, 3, 238-240 (1986) ·Zbl 0641.53063 ·doi:10.1007/BF01078477
[16]Joyce, D.: Configurations in abelian categories. IV. Invariants and changing stability conditions, Adv. in Math. 217, 125-204 (2008) ·Zbl 1134.14008
[17]Joyce, D., Song, Y.: A theory of generalized Donaldson-Thomas invariants, Mem. Amer. Math. Soc. 217, no. 1020, iv+199 pp (2012) ·Zbl 1259.14054
[18]Joyce, D., Holomorphic generating functions for invariants counting coherent sheaves on Calabi-Yau 3-folds, Geom. Topol., 11, 667-725 (2007) ·Zbl 1141.14023 ·doi:10.2140/gt.2007.11.667
[19]Kapustin, A.; Kuznetsov, A.; Orlov, D., Noncommutative instantons and twistor transform, Commun. Math. Phys., 221, 385-432 (2001) ·Zbl 0989.81127 ·doi:10.1007/PL00005576
[20]Kontsevich, M., Soibelman, Y.: Stability structures, motivic Donaldson-Thomas invariants and cluster transformations, arxiv 0811.2435 ·Zbl 1248.14060
[21]LeBrun, C.: Spaces of complex null geodesics in complex-Riemannian geometry, Trans. A.M.S. 278(1), 209-231 (1983) ·Zbl 0562.53018
[22]Mason, LJ; Newman, ET, A connection between the Einstein and Yang-Mills equations, Commun. Math. Phys., 121, 659-668 (1989) ·Zbl 0668.53048 ·doi:10.1007/BF01218161
[23]Han Park, Q., Self-dual gravity as a large-N limit of the 2D non-linear sigma model, Phys. Lett., 238B, 287-90 (1990) ·Zbl 1332.83038 ·doi:10.1016/0370-2693(90)91737-V
[24]Penrose, R., Non-linear gravitons and curved twistor theory, Gen. Relativ. Gravit., 7, 31-52 (1976) ·Zbl 0354.53025 ·doi:10.1007/BF00762011
[25]Plebański, JF, Some solutions of complex Einstein equations, J. Math. Phys., 16, 2395-2402 (1975) ·doi:10.1063/1.522505
[26]Plebański, JF; Przanowski, M.; Rajca, B.; Tosiek, J., The moyal deformation of the second heavenly equation, Acta Phys. Pol. B, 26, 889 (1995) ·Zbl 0966.53529
[27]Strachan, IAB, The Moyal algebra and integrable deformations of the self-dual Einstein equations, Phys. Lett. B, 283, 1-2, 63-66 (1992) ·doi:10.1016/0370-2693(92)91427-B
[28]Strachan, IAB, A geometry for multidimensional integrable systems, J. Geom. Phys., 21, 3, 255-278 (1997) ·Zbl 0893.58061 ·doi:10.1016/S0393-0440(96)00019-8
[29]Takasaki, K., An infinite number of hidden variables in hyper-Kähler metrics, J. Math. Phys., 30, 1515-1521 (1989) ·Zbl 0683.53017 ·doi:10.1063/1.528283
[30]Takasaki, K., Dressing operator approach to Moyal algebraic deformations of selfdual gravity, J. Geom. Phys., 14, 3, 111 (1994) ·Zbl 0803.58059 ·doi:10.1016/0393-0440(94)90003-5
[31]Ward, R.S.: Integrable and solvable systems, and relations among them, Phil. Trans. Roy. Soc. A, (315), issue 1533, 451-457 (1985) ·Zbl 0579.35078
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp