[1] | Balser, W.; Jurkat, WB; Lutz, DA, Birkhoff invariants and Stokes’ multipliers for meromorphic linear differential equations, J. Math. Anal. Appl., 71, 1, 48-94 (1979) ·Zbl 0415.34008 ·doi:10.1016/0022-247X(79)90217-8 |
[2] | Boyer, C.; Plebański, J., An infinite hierarchy of conservation laws and nonlinear superposition principles for self-dual Einstein spaces, J. Math. Phys., 26, 229 (1985) ·Zbl 0555.53044 ·doi:10.1063/1.526652 |
[3] | Bridgeland, T., Stability conditions on triangulated categories, Ann. Math., 166, 31-345 (2007) ·Zbl 1137.18008 ·doi:10.4007/annals.2007.166.317 |
[4] | Bridgeland, T.; Toledano Laredo, V., Stability conditions and Stokes factors, Invent. Math., 187, 1, 61-98 (2012) ·Zbl 1239.14008 ·doi:10.1007/s00222-011-0329-4 |
[5] | Bridgeland, T., Riemann-Hilbert problems from Donaldson-Thomas theory, Invent. Math., 216, 69-124 (2019) ·Zbl 1423.14309 ·doi:10.1007/s00222-018-0843-8 |
[6] | Bridgeland, T.: Geometry from Donaldson-Thomas invariants, preprint arXiv:1912.06504 ·Zbl 1451.14159 |
[7] | Bridgeland, T., Barbieri, A., Stoppa, J.: A quantized Riemann-Hilbert problem in Donaldson-Thomas theory, preprint arXiv:1905.00748 (to appear IMRN) |
[8] | Bridgeland, T.: On the monodromy of the deformed cubic oscillator, with an appendix by D. Masoero, preprint arXiv:2006.10648 |
[9] | Bridgeland, T.: A complexification of the Hitchin system, in preparation |
[10] | Dunajski, M.: Null Kähler geometry and isomonodromic deformations, preprint arXiv:2010.11216 |
[11] | Dunajski, M.; Tod, KP, Einstein-Weyl structures from hyper-Kähler Metrics with conformal Killing vectors, Diff. Geom. Appl., 14, 39-55 (2001) ·Zbl 0997.53036 ·doi:10.1016/S0926-2245(00)00037-1 |
[12] | Fairlie, DB; Zachos, C., Infinite-dimensional algebras, sine brackets, and \(SU(\infty )\), Phys. Lett. B, 224, 1-2, 101-107 (1989) ·Zbl 0689.17019 ·doi:10.1016/0370-2693(89)91057-5 |
[13] | Gaiotto, D.; Moore, G.; Neitzke, A., Four-dimensional wall-crossing via three-dimensional field theory, Comm. Math. Phys., 299, 1, 163-224 (2010) ·Zbl 1225.81135 ·doi:10.1007/s00220-010-1071-2 |
[14] | Gaiotto, D.; Moore, G.; Neitzke, A., Wall-crossing, Hitchin systems, and the WKB approximation, Adv. Math., 234, 239-403 (2013) ·Zbl 1358.81150 ·doi:10.1016/j.aim.2012.09.027 |
[15] | Gindikin, SG, A construction of hyper-Kähler metrics, Funct. Anal. Appl., 20, 3, 238-240 (1986) ·Zbl 0641.53063 ·doi:10.1007/BF01078477 |
[16] | Joyce, D.: Configurations in abelian categories. IV. Invariants and changing stability conditions, Adv. in Math. 217, 125-204 (2008) ·Zbl 1134.14008 |
[17] | Joyce, D., Song, Y.: A theory of generalized Donaldson-Thomas invariants, Mem. Amer. Math. Soc. 217, no. 1020, iv+199 pp (2012) ·Zbl 1259.14054 |
[18] | Joyce, D., Holomorphic generating functions for invariants counting coherent sheaves on Calabi-Yau 3-folds, Geom. Topol., 11, 667-725 (2007) ·Zbl 1141.14023 ·doi:10.2140/gt.2007.11.667 |
[19] | Kapustin, A.; Kuznetsov, A.; Orlov, D., Noncommutative instantons and twistor transform, Commun. Math. Phys., 221, 385-432 (2001) ·Zbl 0989.81127 ·doi:10.1007/PL00005576 |
[20] | Kontsevich, M., Soibelman, Y.: Stability structures, motivic Donaldson-Thomas invariants and cluster transformations, arxiv 0811.2435 ·Zbl 1248.14060 |
[21] | LeBrun, C.: Spaces of complex null geodesics in complex-Riemannian geometry, Trans. A.M.S. 278(1), 209-231 (1983) ·Zbl 0562.53018 |
[22] | Mason, LJ; Newman, ET, A connection between the Einstein and Yang-Mills equations, Commun. Math. Phys., 121, 659-668 (1989) ·Zbl 0668.53048 ·doi:10.1007/BF01218161 |
[23] | Han Park, Q., Self-dual gravity as a large-N limit of the 2D non-linear sigma model, Phys. Lett., 238B, 287-90 (1990) ·Zbl 1332.83038 ·doi:10.1016/0370-2693(90)91737-V |
[24] | Penrose, R., Non-linear gravitons and curved twistor theory, Gen. Relativ. Gravit., 7, 31-52 (1976) ·Zbl 0354.53025 ·doi:10.1007/BF00762011 |
[25] | Plebański, JF, Some solutions of complex Einstein equations, J. Math. Phys., 16, 2395-2402 (1975) ·doi:10.1063/1.522505 |
[26] | Plebański, JF; Przanowski, M.; Rajca, B.; Tosiek, J., The moyal deformation of the second heavenly equation, Acta Phys. Pol. B, 26, 889 (1995) ·Zbl 0966.53529 |
[27] | Strachan, IAB, The Moyal algebra and integrable deformations of the self-dual Einstein equations, Phys. Lett. B, 283, 1-2, 63-66 (1992) ·doi:10.1016/0370-2693(92)91427-B |
[28] | Strachan, IAB, A geometry for multidimensional integrable systems, J. Geom. Phys., 21, 3, 255-278 (1997) ·Zbl 0893.58061 ·doi:10.1016/S0393-0440(96)00019-8 |
[29] | Takasaki, K., An infinite number of hidden variables in hyper-Kähler metrics, J. Math. Phys., 30, 1515-1521 (1989) ·Zbl 0683.53017 ·doi:10.1063/1.528283 |
[30] | Takasaki, K., Dressing operator approach to Moyal algebraic deformations of selfdual gravity, J. Geom. Phys., 14, 3, 111 (1994) ·Zbl 0803.58059 ·doi:10.1016/0393-0440(94)90003-5 |
[31] | Ward, R.S.: Integrable and solvable systems, and relations among them, Phil. Trans. Roy. Soc. A, (315), issue 1533, 451-457 (1985) ·Zbl 0579.35078 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.