[1] | Alexandrov, A., Cut-and-join description of generalized Brezin-Gross-Witten model, Adv. Theor. Math. Phys., 22, 1347 (2018) ·Zbl 07430950 ·doi:10.4310/ATMP.2018.v22.n6.a1 |
[2] | Alexandrov, A., Cut-and-join operator representation for Kontsewich-Witten τ -function, Mod. Phys. Lett. A, 26, 2193 (2011) ·Zbl 1274.81182 ·doi:10.1142/S0217732311036607 |
[3] | Alexandrov, A.; Mironov, A.; Morozov, A., BGWM as second constituent of complex matrix model, JHEP, 12, 053 (2009) ·doi:10.1088/1126-6708/2009/12/053 |
[4] | A. Alexandrov, KdV solves BKP, Proc. Nat. Acad. Sci.118 (2021) e2101917118 [arXiv:2012.10448] [INSPIRE]. |
[5] | A. Alexandrov, Generalized Brézin-Gross-Witten tau-function as a hypergeometric solution of the BKP hierarchy, arXiv:2103.17117 [INSPIRE]. |
[6] | Aokage, K.; Shinkawa, E.; Yamada, H-F, Pfaffian identities and Virasoro operators, Lett. Math. Phys., 110, 1381 (2020) ·Zbl 1487.17049 ·doi:10.1007/s11005-020-01265-1 |
[7] | Balogh, F.; Yang, D., Geometric interpretation of Zhou’s explicit formula for the Witten-Kontsevich tau function, Lett. Math. Phys., 107, 1837 (2017) ·Zbl 1381.37088 ·doi:10.1007/s11005-017-0965-8 |
[8] | Brézin, E.; Gross, DJ, The external field problem in the large N limit of QCD, Phys. Lett. B, 97, 120 (1980) ·doi:10.1016/0370-2693(80)90562-6 |
[9] | Chekhov, L.; Norbury, P., Topological recursion with hard edges, Int. J. Math., 30, 1950014 (2019) ·Zbl 1429.14031 ·doi:10.1142/S0129167X19500149 |
[10] | Cheng, Y., Constraints of the Kadomtsev-Petviashvili hierarchy, J. Math. Phys., 33, 3774 (1992) ·Zbl 0761.35101 ·doi:10.1063/1.529875 |
[11] | Date, E.; Jimbo, M.; Kashiwara, M.; Miwa, T., Transformation groups for soliton equations. 4. A new hierarchy of soliton equations of KP type, Physica D, 4, 343 (1982) ·Zbl 0571.35100 ·doi:10.1016/0167-2789(82)90041-0 |
[12] | Di Francesco, P.; Itzykson, C.; Zuber, JB, Polynomial averages in the Kontsevich model, Commun. Math. Phys., 151, 193 (1993) ·Zbl 0831.14010 ·doi:10.1007/BF02096753 |
[13] | I.P. Goulden and D.M. Jackson, Transitive factorisations into transpositions and holomorphic mappings on the sphere, Proc. A.M.S.125 (1997) 51. ·Zbl 0861.05006 |
[14] | Gross, DJ; Witten, E., Possible third order phase transition in the large N lattice gauge theory, Phys. Rev. D, 21, 446 (1980) ·doi:10.1103/PhysRevD.21.446 |
[15] | J. Harnad, private communication. |
[16] | Harnad, J.; van de Leur, JW; Orlov, AY, Multiple sums and integrals as neutral BKP tau functions, Theor. Math. Phys., 168, 951 (2011) ·doi:10.1007/s11232-011-0077-z |
[17] | C. Itzykson and J.B. Zuber, Combinatorics of the modular group. 2. The Kontsevich integrals, Int. J. Mod. Phys. A7 (1992) 5661 [hep-th/9201001] [INSPIRE]. ·Zbl 0972.14500 |
[18] | Jimbo, M.; Miwa, T., Solitons and infinite dimensional Lie algebras, Publ. Res. Inst. Math. Sci. Kyoto, 19, 943 (1983) ·Zbl 0557.35091 ·doi:10.2977/prims/1195182017 |
[19] | Józefiak, T., Symmetric functions in the Kontsevich-Witten intersection theory of the moduli space of curves, Lett. Math. Phys., 33, 347 (1995) ·Zbl 0836.05075 ·doi:10.1007/BF00749688 |
[20] | Kac, V.; van de Leur, J., Polynomial τ -functions of BKP and DKP hierarchies, J. Math. Phys., 60, 071702 (2019) ·Zbl 1421.37028 ·doi:10.1063/1.5085310 |
[21] | Kontsevich, M., Intersection theory on the moduli space of curves and the matrix Airy function, Commun. Math. Phys., 147, 1 (1992) ·Zbl 0756.35081 ·doi:10.1007/BF02099526 |
[22] | Macdonald, IG, Symmetric functions and Hall polynomials (1995), Oxford U.K: Clarendon Press, Oxford U.K ·Zbl 0824.05059 |
[23] | Y.I. Manin and P. Zograf, Invertible cohomological field theories and Weil-Peterson volumes, math/9902051 [INSPIRE]. ·Zbl 1001.14008 |
[24] | Mironov, A.; Morozov, A., Superintegrability of Kontsevich matrix model, Eur. Phys. J. C, 81, 270 (2021) ·doi:10.1140/epjc/s10052-021-09030-x |
[25] | Mironov, A.; Morozov, A.; Natanzon, S., Cut-and-join structure and integrability for spin Hurwitz numbers, Eur. Phys. J. C, 80, 97 (2020) ·doi:10.1140/epjc/s10052-020-7650-2 |
[26] | A.D. Mironov, A.Y. Morozov, S.M. Natanzon and A.Y. Orlov, Around spin Hurwitz numbers, arXiv:2012.09847 [INSPIRE]. |
[27] | A. Mironov, A. Morozov and G.W. Semenoff, Unitary matrix integrals in the framework of generalized Kontsevich model. 1. Brezin-Gross-Witten model, Int. J. Mod. Phys. A11 (1996) 5031 [hep-th/9404005] [INSPIRE]. ·Zbl 1044.81723 |
[28] | Morozov, A.; Shakirov, S., Generation of matrix models by W-operators, JHEP, 04, 064 (2009) ·Zbl 07977382 ·doi:10.1088/1126-6708/2009/04/064 |
[29] | Mumford, D., Towards an enumerative geometry of the moduli space of curves, Prog. Math., 36, 271 (1983) ·Zbl 0554.14008 |
[30] | Nimmo, JJC, Hall-Littlewood symmetric functions and the BKP equation, J. Phys. A, 23, 751 (1990) ·Zbl 0721.35069 ·doi:10.1088/0305-4470/23/5/018 |
[31] | P. Norbury, A new cohomology class on the moduli space of curves, arXiv:1712.03662. ·Zbl 1225.32023 |
[32] | P. Norbury, Enumerative geometry via the moduli space of super Riemann surfaces, arXiv:2005.04378 [INSPIRE]. |
[33] | A.Y. Orlov, Volterra operator algebra for zero curvature representation. Universality of KP, in Nonlinear processes in physics, A.S. Fokas et al. eds., Springer, Berlin, Germany (1993), p. 126. |
[34] | Orlov, AY, Hypergeometric functions related to Schur Q-polynomials and the BKP equation, Theor. Math. Phys., 137, 1574 (2003) ·Zbl 1178.33015 ·doi:10.1023/A:1027370004436 |
[35] | Schur, J., Über die Darstellung der symmetrischen und der alternierenden Gruppe durch gebrochene lineare Substitutionen, J. Reine Angew. Math., 139, 155 (1911) ·JFM 42.0154.02 |
[36] | J. Stembridge, http://www.math.lsa.umich.edu/∼jrs/maple.html. |
[37] | R. Vakil, Enumerative geometry of curves via degeneration methods, Ph.D. thesis, Harvard University, Cambridge U.S.A. (1997). |
[38] | E. Witten, Two-dimensional gravity and intersection theory on moduli space, in Surveys in differential geometry, H. Blaine Lawson Jr. and S.-T. Yau eds., International Press of Boston, Boston U.S.A. (1991). ·Zbl 0757.53049 |
[39] | You, Y., Polynomial solutions of the BKP hierarchy and projective representations of symmetric groups, Adv. Ser. Math. Phys., 7, 449 (1989) ·Zbl 0744.35052 |
[40] | J. Zhou, Explicit formula for Witten-Kontsevich tau-function, arXiv:1306.5429 [INSPIRE]. |
[41] | J. Zhou, Grothendieck’s dessins d’enfants in a web of dualities, arXiv:1905.10773 [INSPIRE]. |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.