Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Intersection numbers on \({\overline{M}}_{g,n}\) and BKP hierarchy.(English)Zbl 1472.83028

Summary: In their recent inspiring paper [“Superintegrability of Kontsevich matrix model”, Eur. Phys. J. C 81, Paper No. 270, 13 p. (2021;doi:10.1140/epjc/s10052-021-09030-x)],A. Mironov andA. Morozov claim a surprisingly simple expansion formula for the Kontsevich-Witten tau-function in terms of the Schur Q-functions. Here we provide a similar description for the Brézin-Gross-Witten tau-function. Moreover, we identify both tau-functions of the KdV hierarchy, which describe intersection numbers on the moduli spaces of punctured Riemann surfaces, with the hypergeometric solutions of the BKP hierarchy.

MSC:

83C45 Quantization of the gravitational field
83C80 Analogues of general relativity in lower dimensions
81R12 Groups and algebras in quantum theory and relations with integrable systems
53Z05 Applications of differential geometry to physics

Cite

References:

[1]Alexandrov, A., Cut-and-join description of generalized Brezin-Gross-Witten model, Adv. Theor. Math. Phys., 22, 1347 (2018) ·Zbl 07430950 ·doi:10.4310/ATMP.2018.v22.n6.a1
[2]Alexandrov, A., Cut-and-join operator representation for Kontsewich-Witten τ -function, Mod. Phys. Lett. A, 26, 2193 (2011) ·Zbl 1274.81182 ·doi:10.1142/S0217732311036607
[3]Alexandrov, A.; Mironov, A.; Morozov, A., BGWM as second constituent of complex matrix model, JHEP, 12, 053 (2009) ·doi:10.1088/1126-6708/2009/12/053
[4]A. Alexandrov, KdV solves BKP, Proc. Nat. Acad. Sci.118 (2021) e2101917118 [arXiv:2012.10448] [INSPIRE].
[5]A. Alexandrov, Generalized Brézin-Gross-Witten tau-function as a hypergeometric solution of the BKP hierarchy, arXiv:2103.17117 [INSPIRE].
[6]Aokage, K.; Shinkawa, E.; Yamada, H-F, Pfaffian identities and Virasoro operators, Lett. Math. Phys., 110, 1381 (2020) ·Zbl 1487.17049 ·doi:10.1007/s11005-020-01265-1
[7]Balogh, F.; Yang, D., Geometric interpretation of Zhou’s explicit formula for the Witten-Kontsevich tau function, Lett. Math. Phys., 107, 1837 (2017) ·Zbl 1381.37088 ·doi:10.1007/s11005-017-0965-8
[8]Brézin, E.; Gross, DJ, The external field problem in the large N limit of QCD, Phys. Lett. B, 97, 120 (1980) ·doi:10.1016/0370-2693(80)90562-6
[9]Chekhov, L.; Norbury, P., Topological recursion with hard edges, Int. J. Math., 30, 1950014 (2019) ·Zbl 1429.14031 ·doi:10.1142/S0129167X19500149
[10]Cheng, Y., Constraints of the Kadomtsev-Petviashvili hierarchy, J. Math. Phys., 33, 3774 (1992) ·Zbl 0761.35101 ·doi:10.1063/1.529875
[11]Date, E.; Jimbo, M.; Kashiwara, M.; Miwa, T., Transformation groups for soliton equations. 4. A new hierarchy of soliton equations of KP type, Physica D, 4, 343 (1982) ·Zbl 0571.35100 ·doi:10.1016/0167-2789(82)90041-0
[12]Di Francesco, P.; Itzykson, C.; Zuber, JB, Polynomial averages in the Kontsevich model, Commun. Math. Phys., 151, 193 (1993) ·Zbl 0831.14010 ·doi:10.1007/BF02096753
[13]I.P. Goulden and D.M. Jackson, Transitive factorisations into transpositions and holomorphic mappings on the sphere, Proc. A.M.S.125 (1997) 51. ·Zbl 0861.05006
[14]Gross, DJ; Witten, E., Possible third order phase transition in the large N lattice gauge theory, Phys. Rev. D, 21, 446 (1980) ·doi:10.1103/PhysRevD.21.446
[15]J. Harnad, private communication.
[16]Harnad, J.; van de Leur, JW; Orlov, AY, Multiple sums and integrals as neutral BKP tau functions, Theor. Math. Phys., 168, 951 (2011) ·doi:10.1007/s11232-011-0077-z
[17]C. Itzykson and J.B. Zuber, Combinatorics of the modular group. 2. The Kontsevich integrals, Int. J. Mod. Phys. A7 (1992) 5661 [hep-th/9201001] [INSPIRE]. ·Zbl 0972.14500
[18]Jimbo, M.; Miwa, T., Solitons and infinite dimensional Lie algebras, Publ. Res. Inst. Math. Sci. Kyoto, 19, 943 (1983) ·Zbl 0557.35091 ·doi:10.2977/prims/1195182017
[19]Józefiak, T., Symmetric functions in the Kontsevich-Witten intersection theory of the moduli space of curves, Lett. Math. Phys., 33, 347 (1995) ·Zbl 0836.05075 ·doi:10.1007/BF00749688
[20]Kac, V.; van de Leur, J., Polynomial τ -functions of BKP and DKP hierarchies, J. Math. Phys., 60, 071702 (2019) ·Zbl 1421.37028 ·doi:10.1063/1.5085310
[21]Kontsevich, M., Intersection theory on the moduli space of curves and the matrix Airy function, Commun. Math. Phys., 147, 1 (1992) ·Zbl 0756.35081 ·doi:10.1007/BF02099526
[22]Macdonald, IG, Symmetric functions and Hall polynomials (1995), Oxford U.K: Clarendon Press, Oxford U.K ·Zbl 0824.05059
[23]Y.I. Manin and P. Zograf, Invertible cohomological field theories and Weil-Peterson volumes, math/9902051 [INSPIRE]. ·Zbl 1001.14008
[24]Mironov, A.; Morozov, A., Superintegrability of Kontsevich matrix model, Eur. Phys. J. C, 81, 270 (2021) ·doi:10.1140/epjc/s10052-021-09030-x
[25]Mironov, A.; Morozov, A.; Natanzon, S., Cut-and-join structure and integrability for spin Hurwitz numbers, Eur. Phys. J. C, 80, 97 (2020) ·doi:10.1140/epjc/s10052-020-7650-2
[26]A.D. Mironov, A.Y. Morozov, S.M. Natanzon and A.Y. Orlov, Around spin Hurwitz numbers, arXiv:2012.09847 [INSPIRE].
[27]A. Mironov, A. Morozov and G.W. Semenoff, Unitary matrix integrals in the framework of generalized Kontsevich model. 1. Brezin-Gross-Witten model, Int. J. Mod. Phys. A11 (1996) 5031 [hep-th/9404005] [INSPIRE]. ·Zbl 1044.81723
[28]Morozov, A.; Shakirov, S., Generation of matrix models by W-operators, JHEP, 04, 064 (2009) ·Zbl 07977382 ·doi:10.1088/1126-6708/2009/04/064
[29]Mumford, D., Towards an enumerative geometry of the moduli space of curves, Prog. Math., 36, 271 (1983) ·Zbl 0554.14008
[30]Nimmo, JJC, Hall-Littlewood symmetric functions and the BKP equation, J. Phys. A, 23, 751 (1990) ·Zbl 0721.35069 ·doi:10.1088/0305-4470/23/5/018
[31]P. Norbury, A new cohomology class on the moduli space of curves, arXiv:1712.03662. ·Zbl 1225.32023
[32]P. Norbury, Enumerative geometry via the moduli space of super Riemann surfaces, arXiv:2005.04378 [INSPIRE].
[33]A.Y. Orlov, Volterra operator algebra for zero curvature representation. Universality of KP, in Nonlinear processes in physics, A.S. Fokas et al. eds., Springer, Berlin, Germany (1993), p. 126.
[34]Orlov, AY, Hypergeometric functions related to Schur Q-polynomials and the BKP equation, Theor. Math. Phys., 137, 1574 (2003) ·Zbl 1178.33015 ·doi:10.1023/A:1027370004436
[35]Schur, J., Über die Darstellung der symmetrischen und der alternierenden Gruppe durch gebrochene lineare Substitutionen, J. Reine Angew. Math., 139, 155 (1911) ·JFM 42.0154.02
[36]J. Stembridge, http://www.math.lsa.umich.edu/∼jrs/maple.html.
[37]R. Vakil, Enumerative geometry of curves via degeneration methods, Ph.D. thesis, Harvard University, Cambridge U.S.A. (1997).
[38]E. Witten, Two-dimensional gravity and intersection theory on moduli space, in Surveys in differential geometry, H. Blaine Lawson Jr. and S.-T. Yau eds., International Press of Boston, Boston U.S.A. (1991). ·Zbl 0757.53049
[39]You, Y., Polynomial solutions of the BKP hierarchy and projective representations of symmetric groups, Adv. Ser. Math. Phys., 7, 449 (1989) ·Zbl 0744.35052
[40]J. Zhou, Explicit formula for Witten-Kontsevich tau-function, arXiv:1306.5429 [INSPIRE].
[41]J. Zhou, Grothendieck’s dessins d’enfants in a web of dualities, arXiv:1905.10773 [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp